150,452 research outputs found

    Micro- and nanosystems for biology and medicine

    Get PDF
    The development of new tools and instruments for biomedical applications based on nano- (NEMS) or microelectromechanical systems technology (MEMS) are bridging the gap between the macro- and the nano-world. The well mastered microtechnique allows controlling many parameters of these instruments, which is essential for conducting reproducible and repeatable experiments in the life sciences. Examples are multifunctional scanning probe sensors for cell biology, an arthroscopic scanning force microscope for minimally invasive medical interventions and a nanopore sensor for single molecule experiments in biochemistry. This paper reviews some of the activities conducted in a fruitful interdisciplinary collaboration between physicists, engineers, biologists and physicians

    Straddling the intersection

    Get PDF
    Music technology straddles the intersection between art and science and presents those who choose to work within its sphere with many practical challenges as well as creative possibilities. The paper focuses on four main areas: secondary education, higher education, practice and research and finally collaboration. The paper emphasises the importance of collaboration in tackling the challenges of interdisciplinarity and in influencing future technological developments

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    The Art Of Repairing - Or How To Teach Engineering Students Sustainable Design Principles

    Get PDF
    Project-based learning bridges the gap between theoretical training and practical applications. The motivation of students to participate is increased especially by working out real-life problems. To provide this kind of practical learning experience, we are establishing a repair project for broken, otherwise discarded, lab equipment. It will not only help to reduce waste and save money by repairing research equipment, but will also encourage interdisciplinary collaboration and innovation. Providing a space to learn about the underlying functional properties of various often highly specialized lab instruments, students identify malfunctions, deepen understanding of vulnerable designs, and discuss and perform strategies for repairing them under guidance, while collecting credit points. Through gaining a deep understanding of how these instruments work, students may even invent new strategies to realize similar tasks or add new features. This project builds on the findings from a 2021 pilot study. We discovered that by offering a repair project, students were able to gain a deeper understanding of theoretical concepts, improve their self-confidence as well as their motivation in learning, and increase their awareness of sustainable design. In the following, we are presenting the transformation of the pilot study into a current course concept. With weekly minievaluations we are monitoring studentsā€™ learning success towards their learning goals and share the results

    Conducting a Self-Assessment of a Long-Term Archive for Interdisciplinary Scientific Data as a Trustworthy Digital Repository

    Get PDF
    4th International Conference on Open RepositoriesThis presentation was part of the session : Conference PresentationsDate: 2009-05-19 03:00 PM ā€“ 04:30 PMLong-term preservation and stewardship of scientific data and research-related information is paramount to the future of science and scholarship. Disciplinary and interdisciplinary scientific data archives can offer capabilities for managing and preserving data for research, education, and decision-making activities of future communities representing various scientific and scholarly disciplines. However, meeting the requirements for a trusted digital repository presents challenges to ensure that archived collections will be discoverable, accessible, and usable in the future. Assessing whether scientific data archives meet the requirements for trustworthy repositories will help to ensure that todayĆ¢ s collections of scientific data will be available in the future. A continuing self-assessment of a long-term archive for interdisciplinary scientific data is being conducted to identify improvements needed to become a trustworthy repository for managing and providing access to interdisciplinary scientific data by future communities of users. Recommendations are offered for archives of scientific data to meet the requirements of a trustworthy repository.NAS

    CERES: Clouds and the Earth's Radiant Energy System

    Get PDF
    This brochure gives a brief description of the science research that is being done with data from the Clouds and Earth's Radiant Energy System (CERES) instrument flying onboard NASA's Terra satellite. It also contains information about some of the data products and technical specifications. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional
    • ā€¦
    corecore