152,239 research outputs found
Optical Interconnection Networks Based on Microring Resonators
Abstract — Interconnection networks must transport an always increasing information density and connect a rising number of processing units. Electronic technologies have been able to sustain the traffic growth rate, but are getting close to their physical limits. In this context, optical interconnection networks are becoming progressively more attractive, especially because new photonic devices can be directly integrated in CMOS technology. Indeed, interest in microring resonators as switching components is rising, but their usability in full optical interconnection architectures is still limited by their physical characteristics. Indeed, differently from classical devices used for switching, switching elements based on microring resonators exhibit asymmetric power losses depending on the output ports input signals are directed to. In this paper, we study classical interconnection architectures such as crossbar, Benes and Clos networks exploiting microring resonators as building blocks. Since classical interconnection networks lack either scalability or complexity, we propose two new architectures to improve performance of microring based interconnection networks while keeping a reasonable complexity. I
Interconnection network architectures based on integrated orbital angular momentum emitters
Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance
A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks
This paper presents a stability test for a class of interconnected nonlinear
systems motivated by biochemical reaction networks. One of the main results
determines global asymptotic stability of the network from the diagonal
stability of a "dissipativity matrix" which incorporates information about the
passivity properties of the subsystems, the interconnection structure of the
network, and the signs of the interconnection terms. This stability test
encompasses the "secant criterion" for cyclic networks presented in our
previous paper, and extends it to a general interconnection structure
represented by a graph. A second main result allows one to accommodate state
products. This extension makes the new stability criterion applicable to a
broader class of models, even in the case of cyclic systems. The new stability
test is illustrated on a mitogen activated protein kinase (MAPK) cascade model,
and on a branched interconnection structure motivated by metabolic networks.
Finally, another result addresses the robustness of stability in the presence
of diffusion terms in a compartmental system made out of identical systems.Comment: See http://www.math.rutgers.edu/~sontag/PUBDIR/index.html for related
(p)reprint
Optical interconnection networks based on microring resonators
Optical microring resonators can be integrated on a chip to perform switching operations directly in the optical domain. Thus they become a building block to create switching elements in on-chip optical interconnection networks, which promise to overcome some of the limitations of current electronic networks. However, the peculiar asymmetric power losses of microring resonators impose new constraints on the design and control of on-chip optical networks. In this work, we study the design of multistage interconnection networks optimized for a particular metric that we name the degradation index, which characterizes the asymmetric behavior of microrings. We also propose a routing control algorithm to maximize the overall throughput, considering the maximum allowed degradation index as a constrain
Recommended from our members
Lowest common ancestor interconnection networks
Lowest Common Ancestor (LCA) networks are built using switches capable of connecting u + d inputs/outputs in a permutation pattern. For n source nodes and I stages of switches, n/d switches are used in stage l - n/d - u/d in stage l - 2, and in general , n-u^l-i-l/d^l-i switches in stage i. The resulting hierarchical structure possesses interesting connectivity and permutational properties. A full characterization of LCA networks is presented together with a permutation routing algorithm for a family of LCA networks. The algorithm uses the network itself to collect and disseminate information about the permutation. A schedule of O(dp log_d/u n) passes is obtained with a switch set-up cost factor of O(log_d/u n) (p is the minimum number of passes that an algorithm with global knowledge schedules)
Analysis of searching mechanisms in hierarchical p2p based overlay networks
Proceedings of: The 6th Annual Mediterranean Ad Hoc Networking Workshop (Med Hoc Net 2007. (Corfu, Greece), June 2007This work presents a study of searching mechanisms in Peer-to-Peer (p2p) networks. The aim of this research line is to analyse cross-searching mechanisms that will allow the hierarchical interconnection of p2p networks. A set of relevant metrics for interconnection scenarios are defined to evaluate scalability, robustness and routing latency.This work has been partially supported by the European Union under the IST Content (FP6-2006-IST-507295) project and by the Madrid regional government under the Biogridnet (CAM, S-0505/TIC-0101) project.Publicad
Interconnection of Cable Networks: A Regulation Proposal for Broadband Internet Services
In this article a brief revision of the European and Portuguese Regulatory frameworks is made, especially in terms of the interconnection of broadband internet services that are offered by cable operators. A formalization with two cable networks is presented, in order to obtain a benchmark for symmetric networks, and two scenarios: collusion and regulated market; are developed. This justifies the implementation of regulatory policies, with the establishment of caps for the interconnection tariffs, in order to assure a larger penetration rate of the broadband internet services and a bigger total welfare.Regulation; Tariffs of Interconnection; Goodwill
- …
