502,366 research outputs found

    Multiple structural transitions in interacting networks

    Get PDF
    Many real-world systems can be modeled as interconnected multilayer networks, namely a set of networks interacting with each other. Here we present a perturbative approach to study the properties of a general class of interconnected networks as inter-network interactions are established. We reveal multiple structural transitions for the algebraic connectivity of such systems, between regimes in which each network layer keeps its independent identity or drives diffusive processes over the whole system, thus generalizing previous results reporting a single transition point. Furthermore we show that, at first order in perturbation theory, the growth of the algebraic connectivity of each layer depends only on the degree configuration of the interaction network (projected on the respective Fiedler vector), and not on the actual interaction topology. Our findings can have important implications in the design of robust interconnected networked system, particularly in the presence of network layers whose integrity is more crucial for the functioning of the entire system. We finally show results of perturbation theory applied to the adjacency matrix of the interconnected network, which can be useful to characterize percolation processes on such systems

    Robustness of Network of Networks with Interdependent and Interconnected links

    Full text link
    Robustness of network of networks (NON) has been studied only for dependency coupling (J.X. Gao et. al., Nature Physics, 2012) and only for connectivity coupling (E.A. Leicht and R.M. D Souza, arxiv:0907.0894). The case of network of n networks with both interdependent and interconnected links is more complicated, and also more closely to real-life coupled network systems. Here we develop a framework to study analytically and numerically the robustness of this system. For the case of starlike network of n ER networks, we find that the system undergoes from second order to first order phase transition as coupling strength q increases. We find that increasing intra-connectivity links or inter-connectivity links can increase the robustness of the system, while the interdependency links decrease its robustness. Especially when q=1, we find exact analytical solutions of the giant component and the first order transition point. Understanding the robustness of network of networks with interdependent and interconnected links is helpful to design resilient infrastructures

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    A New Efficient Stochastic Energy Management Technique for Interconnected AC Microgrids

    Full text link
    Cooperating interconnected microgrids with the Distribution System Operation (DSO) can lead to an improvement in terms of operation and reliability. This paper investigates the optimal operation and scheduling of interconnected microgrids highly penetrated by renewable energy resources (DERs). Moreover, an efficient stochastic framework based on the Unscented Transform (UT) method is proposed to model uncertainties associated with the hourly market price, hourly load demand and DERs output power. Prior to the energy management, a newly developed linearization technique is employed to linearize nodal equations extracted from the AC power flow. The proposed stochastic problem is formulated as a single-objective optimization problem minimizing the interconnected AC MGs cost function. In order to validate the proposed technique, a modified IEEE 69 bus network is studied as the test case

    The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone

    Full text link
    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization
    corecore