460,798 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Highly Optimized Tolerance: Robustness and Design in Complex Systems

    Get PDF
    Highly optimized tolerance (HOT) is a mechanism that relates evolving structure to power laws in interconnected systems. HOT systems arise where design and evolution create complex systems sharing common features, including (1) high efficiency, performance, and robustness to designed-for uncertainties, (2) hypersensitivity to design flaws and unanticipated perturbations, (3) nongeneric, specialized, structured configurations, and (4) power laws. We study the impact of incorporating increasing levels of design and find that even small amounts of design lead to HOT states in percolation

    Highly Optimized Tolerance: Robustness and Power Laws in Complex Systems

    Get PDF
    We introduce highly optimized tolerance (HOT), a mechanism that connects evolving structure and power laws in interconnected systems. HOT systems arise, e.g., in biology and engineering, where design and evolution create complex systems sharing common features, including (1) high efficiency, performance, and robustness to designed-for uncertainties, (2) hypersensitivity to design flaws and unanticipated perturbations, (3) nongeneric, specialized, structured configurations, and (4) power laws. We introduce HOT states in the context of percolation, and contrast properties of the high density HOT states with random configurations near the critical point. While both cases exhibit power laws, only HOT states display properties (1-3) associated with design and evolution.Comment: 4 pages, 2 figure

    Anticipating and Coordinating Voltage Control for Interconnected Power Systems

    Get PDF
    This paper deals with the application of an anticipating and coordinating feedback control scheme in order to mitigate the long-term voltage instability of multi-area power systems. Each local area is uniquely controlled by a control agent (CA) selecting control values based on model predictive control (MPC) and is possibly operated by an independent transmission system operator (TSO). Each MPC-based CA only knows a detailed local hybrid system model of its own area, employing reduced-order quasi steady-state (QSS) hybrid models of its neighboring areas and even simpler PV models for remote areas, to anticipate (and then optimize) the future behavior of its own area. Moreover, the neighboring CAs agree on communicating their planned future control input sequence in order to coordinate their own control actions. The feasibility of the proposed method for real-time applications is explained, and some practical implementation issues are also discussed. The performance of the method, using time-domain simulation of the Nordic32 test system, is compared with the uncoordinated decentralized MPC (no information exchange among CAs), demonstrating the improved behavior achieved by combining anticipation and coordination. The robustness of the control scheme against modeling uncertainties is also illustrated

    Fuzzy logic damping controller for FACTS devices in interconnected power systems

    Get PDF
    Fuzzy controllers are designed for flexible AC transmission systems (FACTS) in interconnected power systems. Two typical FACTS devices, a static synchronous compensator (STATCOM) and a unified power flow controller (UPFC), are used as examples to show that FACTS devices with well-designed fuzzy controllers can significantly improve the dynamic behavior of interconnected power systems.published_or_final_versio

    Computation of Electric Energy Exchange between two Power Systems

    Get PDF
    The expected energy exchange between cooperating systems is an important information supporting capacity expansion planning for electric power systems. A model based on engineering considerations and a program system on IBM/PC-XT or AT compatibles has been developed for the stochastic analysis of the electric energy exchange between two interconnected power systems. Data required for the analysis are expected generation and load in the individual systems, and interties data. This work has been carried out in the frame of the IIASA Contracted Study "Modeling of interconnected power systems"

    Diverse, remote and innovative - Prospects for a globally unique electricity network and market in Western Australia

    Get PDF
    WA’s electricity industry supply infrastructure comprises the South West Inter-connected System (SWIS), the North West Interconnected System (NWIS) and 29 regional noninterconnected power systems 1. WA exhibits a diversity of generation systems located in some of the most isolated regions of Australia, supplying a wide range of energy demand profiles. These characteristics and the unique networks that comprises WA’s electricity infrastructure makes WA a unique place to research, develop and integrate new technical options within a world-class industrialised electricity system

    Stability and Control of Power Systems using Vector Lyapunov Functions and Sum-of-Squares Methods

    Full text link
    Recently sum-of-squares (SOS) based methods have been used for the stability analysis and control synthesis of polynomial dynamical systems. This analysis framework was also extended to non-polynomial dynamical systems, including power systems, using an algebraic reformulation technique that recasts the system's dynamics into a set of polynomial differential algebraic equations. Nevertheless, for large scale dynamical systems this method becomes inapplicable due to its computational complexity. For this reason we develop a subsystem based stability analysis approach using vector Lyapunov functions and introduce a parallel and scalable algorithm to infer the stability of the interconnected system with the help of the subsystem Lyapunov functions. Furthermore, we design adaptive and distributed control laws that guarantee asymptotic stability under a given external disturbance. Finally, we apply this algorithm for the stability analysis and control synthesis of a network preserving power system.Comment: to appear at the 14th annual European Control Conferenc
    corecore