460,798 research outputs found
Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems
The first-ever Ukraine cyberattack on power grid has proven its devastation
by hacking into their critical cyber assets. With administrative privileges
accessing substation networks/local control centers, one intelligent way of
coordinated cyberattacks is to execute a series of disruptive switching
executions on multiple substations using compromised supervisory control and
data acquisition (SCADA) systems. These actions can cause significant impacts
to an interconnected power grid. Unlike the previous power blackouts, such
high-impact initiating events can aggravate operating conditions, initiating
instability that may lead to system-wide cascading failure. A systemic
evaluation of "nightmare" scenarios is highly desirable for asset owners to
manage and prioritize the maintenance and investment in protecting their
cyberinfrastructure. This survey paper is a conceptual expansion of real-time
monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework
that emphasizes on the resulting impacts, both on steady-state and dynamic
aspects of power system stability. Hypothetically, we associate the
combinatorial analyses of steady state on substations/components outages and
dynamics of the sequential switching orders as part of the permutation. The
expanded framework includes (1) critical/noncritical combination verification,
(2) cascade confirmation, and (3) combination re-evaluation. This paper ends
with a discussion of the open issues for metrics and future design pertaining
the impact quantification of cyber-related contingencies
Highly Optimized Tolerance: Robustness and Design in Complex Systems
Highly optimized tolerance (HOT) is a mechanism that relates evolving structure to power laws in interconnected systems. HOT systems arise where design and evolution create complex systems sharing common features, including (1) high efficiency, performance, and robustness to designed-for uncertainties, (2) hypersensitivity to design flaws and unanticipated perturbations, (3) nongeneric, specialized, structured configurations, and (4) power laws. We study the impact of incorporating increasing levels of design and find that even small amounts of design lead to HOT states in percolation
Highly Optimized Tolerance: Robustness and Power Laws in Complex Systems
We introduce highly optimized tolerance (HOT), a mechanism that connects
evolving structure and power laws in interconnected systems. HOT systems arise,
e.g., in biology and engineering, where design and evolution create complex
systems sharing common features, including (1) high efficiency, performance,
and robustness to designed-for uncertainties, (2) hypersensitivity to design
flaws and unanticipated perturbations, (3) nongeneric, specialized, structured
configurations, and (4) power laws. We introduce HOT states in the context of
percolation, and contrast properties of the high density HOT states with random
configurations near the critical point. While both cases exhibit power laws,
only HOT states display properties (1-3) associated with design and evolution.Comment: 4 pages, 2 figure
Anticipating and Coordinating Voltage Control for Interconnected Power Systems
This paper deals with the application of an anticipating and coordinating feedback control scheme in order to mitigate the long-term voltage instability of multi-area power systems. Each local area is uniquely controlled by a control agent (CA) selecting control values based on model predictive control (MPC) and is possibly operated by an independent transmission system operator (TSO). Each MPC-based CA only knows a detailed local hybrid system model of its own area, employing reduced-order quasi steady-state (QSS) hybrid models of its neighboring areas and even simpler PV models for remote areas, to anticipate (and then optimize) the future behavior of its own area. Moreover, the neighboring CAs agree on communicating their planned future control input sequence in order to coordinate their own control actions. The feasibility of the proposed method for real-time applications is explained, and some practical implementation issues are also discussed. The performance of the method, using time-domain simulation of the Nordic32 test system, is compared with the uncoordinated decentralized MPC (no information exchange among CAs), demonstrating the improved behavior achieved by combining anticipation and coordination. The robustness of the control scheme against modeling uncertainties is also illustrated
Fuzzy logic damping controller for FACTS devices in interconnected power systems
Fuzzy controllers are designed for flexible AC transmission systems (FACTS) in interconnected power systems. Two typical FACTS devices, a static synchronous compensator (STATCOM) and a unified power flow controller (UPFC), are used as examples to show that FACTS devices with well-designed fuzzy controllers can significantly improve the dynamic behavior of interconnected power systems.published_or_final_versio
Computation of Electric Energy Exchange between two Power Systems
The expected energy exchange between cooperating systems is an important information supporting capacity expansion planning for electric power systems. A model based on engineering considerations and a program system on IBM/PC-XT or AT compatibles has been developed for the stochastic analysis of the electric energy exchange between two interconnected power systems. Data required for the analysis are expected generation and load in the individual systems, and interties data. This work has been carried out in the frame of the IIASA Contracted Study "Modeling of interconnected power systems"
Diverse, remote and innovative - Prospects for a globally unique electricity network and market in Western Australia
WA’s electricity industry supply infrastructure comprises the South West Inter-connected System (SWIS), the North West Interconnected System (NWIS) and 29 regional noninterconnected power systems 1. WA exhibits a diversity of generation systems located in some of the most isolated regions of Australia, supplying a wide range of energy demand profiles. These characteristics and the unique networks that comprises WA’s electricity infrastructure makes WA a unique place to research, develop and integrate new technical options within a world-class industrialised electricity system
Stability and Control of Power Systems using Vector Lyapunov Functions and Sum-of-Squares Methods
Recently sum-of-squares (SOS) based methods have been used for the stability
analysis and control synthesis of polynomial dynamical systems. This analysis
framework was also extended to non-polynomial dynamical systems, including
power systems, using an algebraic reformulation technique that recasts the
system's dynamics into a set of polynomial differential algebraic equations.
Nevertheless, for large scale dynamical systems this method becomes
inapplicable due to its computational complexity. For this reason we develop a
subsystem based stability analysis approach using vector Lyapunov functions and
introduce a parallel and scalable algorithm to infer the stability of the
interconnected system with the help of the subsystem Lyapunov functions.
Furthermore, we design adaptive and distributed control laws that guarantee
asymptotic stability under a given external disturbance. Finally, we apply this
algorithm for the stability analysis and control synthesis of a network
preserving power system.Comment: to appear at the 14th annual European Control Conferenc
- …
