3 research outputs found

    Implementation of a Discrete Dipole Approximation Scattering Database Into Community Radiative Transfer Model

    Get PDF
    The Community Radiative Transfer Model (CRTM) is a fast model that requires bulk optical properties of hydrometeors in the form of lookup tables to simulate all-sky satellite radiances. Current cloud scattering lookup tables of CRTM were generated using the Mie-Lorenz theory thus assuming spherical shapes for all frozen habits, while actual clouds contain frozen hydrometeors with different shapes. The Discrete Dipole Approximation (DDA) technique is an effective technique for simulating the optical properties of non-spherical hydrometeors in the microwave region. This paper discusses the implementation and validation of a comprehensive DDA cloud scattering database into CRTM for the microwave frequencies. The original DDA database assumes total random orientation in the calculation of single scattering properties. The mass scattering parameters required by CRTM were then computed from single scattering properties and water content dependent particle size distributions. The new lookup tables eliminate the requirement for providing the effective radius as input to CRTM by using the cloud water content for the mass dimension. A collocated dataset of short-term forecasts from Integrated Forecast System of the European Center for Medium-Range Weather Forecasts and satellite microwave data was used for the evaluation of results. The results overall showed that the DDA lookup tables, in comparison with the Mie tables, greatly reduce the differences among simulated and observed values. The Mie lookup tables especially introduce excessive scattering for the channels operating below 90\ua0GHz and low scattering for the channels above 90\ua0GHz

    On-orbit Inter-satellite Radiometric Calibration of Cross-track Scanning Microwave Radiometers

    Get PDF
    This dissertation concerns the development of an improved algorithm for the inter-satellite radiometric calibration (XCAL) for cross track scanning microwave radiometers in support of NASA\u27s Global Precipitation Mission (GPM). This research extends previous XCAL work to assess the robustness of the CFRSL double difference technique for sounder X-CAL. In this work, using a two-year of observations, we present a statistical analysis of radiometric biases performed over time and viewing geometry. In theory, it is possible to apply the same X-CAL procedure developed for conical-scanning radiometers to cross-track scanners; however the implementation is generally more tedious. For example, with the cross-track scan angle, there is a strong response in the observed Tb due to changes in the atmosphere slant path and surface emissivity with the Earth incidence angle. For ocean scenes this is trivial; however for land scenes there is imperfect knowledge of polarized emissivity. However, for the sounder channels the surface emissivity is not the dominant component of top-of-the-atmosphere Tb, which is a mitigating factor. Also, cross-track scanners introduce changes in the radiometer antenna observed polarization with scan angle. The resulting observation is a mixture of un-polarized atmospheric emissions and vertical and horizontal polarized surface emissions. The degree of polarization mixing is known from geometry; however, reasonable estimates of the surface emissivity are required, which complicate over land comparisons. Finally, the IFOV size monotonically increases over the cross-track scan. Thus, when inter-comparing cross-track scanning radiometers, it will be necessary to carefully consider these effects when performing the double difference procedure

    Intercalibration and Validation of Observations From ATMS and SAPHIR Microwave Sounders

    No full text
    This paper evaluates the radiometric accuracy of observations from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership and Sondeur Atmospherique du Profil d\u27 Humidite Intropicale par Radiometrie (SAPHIR) onboard Megha-Tropiques through intercalibration and validation versus in situ radiosonde and Global Positioning System Radio Occultation (GPS-RO) observations. SAPHIR and ATMS water vapor channels operate at slightly different frequencies. We calculated the bias due to radiometric errors as the difference between the observed and simulated differences between the two instruments. This difference, which is often referred to as double difference, ranges between 0.3 and 0.7 K, which shows good consistency between the instruments. We used a radiative transfer model to simulate the satellite brightness temperatures (Tbs) using radiosonde and GPS-RO profiles and then compared simulated and observed Tbs. The difference between radiosonde and ATMS Tbs for the middle and upper tropospheric temperature sounding channels was less than 0.5 K at most stations, but the difference between radiosonde and ATMS/SAPHIR Tbs for water vapor channels was between 0.5 and 2.0 K. The larger bias for the water vapor channels is mainly due to several errors in radiosonde humidity observations. The mean differences between the ATMS observations and the Tbs simulated using GPS-RO profiles were 0.2, 0.3, 0.4, 0.2, and -0.2 K for channels 10-14, respectively; and the uncertainty increases from 0.02 K for channel 10 to 0.07 K for channel 14
    corecore