33,156 research outputs found
New Superconducting Phase of Li(CHN)FeSe with = 41 K Obtained through the Post-Annealing
Post-annealing effects on the crystal structure and superconductivity of the
lithium- and hexamethylenediamine (HMDA)-intercalated superconductor
Lix(C6H16N2)yFe2-zSe2 have been investigated. Through the post-annealing, a
two-step reduction of the interlayer spacing between neighboring Fe layers, d,
has been observed. It has been found that a new phase of Lix(C6H16N2)yFe2-zSe2
with d= 10.30(2) {\AA} and Tc = 41 K different from the as-intercalated phase
is stabilized owing to the possible stable inclination of HMDA intercalated
between FeSe layers. This result supports the domic relation between Tc and d
in the FeSe-based intercalation superconductors. The reason why Tc increases
with a decrease in d through the post-annealing is discussed.Comment: 12 pages, 6 figure
Recommended from our members
Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase.
Specialized proton-secreting cells known collectively as mitochondria-rich cells are found in a variety of transporting epithelia, including the kidney collecting duct (intercalated cells) and toad and turtle urinary bladders. These cells contain a population of characteristic tubulovesicles that are believed to be involved in the shuttling of proton pumps (H+ATPase) to and from the plasma membrane. These transporting vesicles have a dense, studlike material coating the cytoplasmic face of their limiting membranes and similar studs are also found beneath parts of the plasma membrane. We have recently shown that this membrane coat does not contain clathrin. The present study was performed to determine the structure of this coat in rapidly frozen and freeze-dried tissue, and to determine whether the coat contains a major membrane protein transported by these vesicles, a proton pumping H+ATPase. The structure of the coat was examined in proton-secreting, mitochondria-rich cells from toad urinary bladder epithelium by rapidly freezing portions of apical membrane and associated cytoplasm that were sheared away from the remainder of the cell using polylysine-coated coverslips. Regions of the underside of these apical membranes as large as 0.2 micron2 were decorated by studlike projections that were arranged into regular hexagonal arrays. Individual studs had a diameter of 9.5 nm and appeared to be composed of multiple subunits arranged around a central depression, possibly representing a channel. The studs had a density of approximately 16,800 per micron2 of membrane. Similar arrays of studs were also found on vesicles trapped in the residual band of cytoplasm that remained attached to the underside of the plasma membrane, but none were seen in adjacent granular cells. To determine whether these arrays of studs contained H+ATPase molecules, we examined a preparation of affinity-purified bovine medullary H+ATPase, using the same technique, after incorporation of the protein eluted from a monoclonal antibody affinity column into phospholipid liposomes. The affinity-purified protein was shown to be capable of ATP-dependent acidification. In such preparations, large paracrystalline arrays of studs identical in appearance to those seen in situ were found. The dimensions of the studs as well as the number per square micrometer of membrane were identical to those of toad bladder mitochondria-rich cells: 9.5 nm in diameter, 16,770 per micron2 of membrane.(ABSTRACT TRUNCATED AT 400 WORDS
Recommended from our members
EARLY HISTOCHEMICAL CHANGES IN IRRADIATED SALIVARY GLANDS AND LYMPH-NODES OF THE RAT.
Anatomy and computational modeling of networks underlying cognitive-emotional interaction
The classical dichotomy between cognition and emotion equated the first with rationality or logic and the second with irrational behaviors. The idea that cognition and emotion are separable, antagonistic forces competing for dominance of mind has been hard to displace despite abundant evidence to the contrary. For instance, it is now known that a pathological absence of emotion leads to profound impairment of decision making. Behavioral observations of this kind are corroborated at the mechanistic level: neuroanatomical studies reveal that brain areas typically described as underlying either cognitive or emotional processes are linked in ways that imply complex interactions that do not resemble a simple mutual antagonism. Instead, physiological studies and network simulations suggest that top-down signals from prefrontal cortex realize "cognitive control" in part by either suppressing or promoting emotional responses controlled by the amygdala, in a way that facilitates adaptation to changing task demands. Behavioral, anatomical, and physiological data suggest that emotion and cognition are equal partners in enabling a continuum or matrix of flexible behaviors that are subserved by multiple brain regions acting in concert. Here we focus on neuroanatomical data that highlight circuitry that structures cognitive-emotional interactions by directly or indirectly linking prefrontal areas with the amygdala. We also present an initial computational circuit model, based on anatomical, physiological, and behavioral data to explicitly frame the learning and performance mechanisms by which cognition and emotion interact to achieve flexible behavior.R01 MH057414 - NIMH NIH HHS; R01 NS024760 - NINDS NIH HH
Unforeseen high temperature and humidity stability of FeCl intercalated few layer graphene
We present the first systematic study of the stability of the structure and
electrical properties of FeCl intercalated few-layer graphene to high
levels of humidity and high temperature. Complementary experimental techniques
such as electrical transport, high resolution transmission electron microscopy
and Raman spectroscopy conclusively demonstrate the unforeseen stability of
this transparent conductor to a relative humidity up to at room
temperature for 25 days, to a temperature up to C in atmosphere
and up to a temperature as high as C in vacuum, that is more than
twice higher than the temperature at which the intercalation is conducted. The
stability of FeCl intercalated few-layer graphene together with its unique
values of low square resistance and high optical transparency, makes this
material an attractive transparent conductor in future flexible electronic
applications.Comment: Scientific Reports, volume 5, article no. 760
Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems
Tungsten trioxide adopts a variety of structures which can be intercalated
with charged species to alter the electronic properties, thus forming `tungsten
bronzes'. Similar optical effects are observed upon removing oxygen from WO_3,
although the electronic properties are slightly different. Here we present a
computational study of cubic and hexagonal alkali bronzes and examine the
effects on cell size and band structure as the size of the intercalated ion is
increased. With the exception of hydrogen (which is predicted to be unstable as
an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3
is the most stable of the cubic systems, although in the hexagonal system the
larger ions are more stable. The band structures are identical, with the
intercalated atom donating its single electron to the tungsten 5d valence band.
Next, this was extended to a study of fractional doping in the Na_xWO_3 system
(0 < x < 1). A linear variation in cell parameter, and a systematic change in
the position of the Fermi level up into the valence band was observed with
increasing x. In the underdoped WO_3-x system however, the Fermi level
undergoes a sudden jump into the conduction band at around x = 0.2. Lastly,
three compounds of a layered WO_4×a,wdiaminoalkane hybrid series were
studied and found to be insulating, with features in the band structure similar
to those of the parent WO_3 compound which relate well to experimental
UV-visible spectroscopy results.Comment: 12 pages, 16 figure
Comment on "Large energy gaps in CaC6 from tunneling spectroscopy: possible evidence of strong-coupling superconductivity"
Comment on "Large energy gaps in CaC6 from tunneling spectroscopy: possible
evidence of strong-coupling superconductivity
- …
