7,929 research outputs found

    Proposal of a mobile learning preferences model

    Get PDF
    A model consisting of five dimensions of mobile learning preferences – location, level of distractions, time of day, level of motivation and available time – is proposed in this paper. The aim of the model is to potentially increase the learning effectiveness of individuals or groups by appropriately matching and allocating mobile learning materials/applications according to each learner’s type. Examples are given. Our current research investigations relating to this model are described

    SmartMirror: A Glance into the Future

    Get PDF
    In todays society, information is available to us at a glance through our phones, our laptops, our desktops, and more. But an extra level of interaction is required in order to access the information. As technology grows, technology should grow further and further away from the traditional style of interaction with devices. In the past, information was relayed through paper, then through computers, and in todays day and age, through our phones and multiple other mediums. Technology should become more integrated into our lives - more seamless and more invisible. We hope to push the envelope further, into the future. We propose a new simple way of connecting with your morning newspaper. We present our idea, the SmartMirror, information at a glance. Our system aims to deliver your information quickly and comfortably, with a new modern aesthetic. While modern appliances require input through modules such as keyboards or touch screen, we hope to follow a model that can function purely on voice and gesture. We seek to deliver your information during your morning routine and throughout the day, when taking out your phone is not always possible. This will cater to a larger audience base, as the average consumer nowadays hopes to accomplish tasks with minimal active interaction with their adopted technology. This idea has many future applications, such as integration with new virtual or augmented reality devices, or simplifying consumer personal media sources

    Agricultural information dissemination using ICTs: a review and analysis of information dissemination models in China

    Get PDF
    Open Access funded by China Agricultural UniversityOver the last three decades, China’s agriculture sector has been transformed from the traditional to modern practice through the effective deployment of Information and Communication Technologies (ICTs). Information processing and dissemination have played a critical role in this transformation process. Many studies in relation to agriculture information services have been conducted in China, but few of them have attempted to provide a comprehensive review and analysis of different information dissemination models and their applications. This paper aims to review and identify the ICT based information dissemination models in China and to share the knowledge and experience in applying emerging ICTs in disseminating agriculture information to farmers and farm communities to improve productivity and economic, social and environmental sustainability. The paper reviews and analyzes the development stages of China’s agricultural information dissemination systems and different mechanisms for agricultural information service development and operations. Seven ICT-based information dissemination models are identified and discussed. Success cases are presented. The findings provide a useful direction for researchers and practitioners in developing future ICT based information dissemination systems. It is hoped that this paper will also help other developing countries to learn from China’s experience and best practice in their endeavor of applying emerging ICTs in agriculture information dissemination and knowledge transfer

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Analysis and design of a subtitling system for ambient intelligence environments

    Get PDF
    The development of ubiquitous applications for ambient intelligence environments needs to also take into account some usability and accessibility issues in order to ensure a proper user experience and to overcome the existing content access barriers. A proper access to video subtitles, for instance, is not always available due to the technical limitations of traditional video packaging, transmission and presentation. New Web standards enable more featured applications with better multi-platform definition, so they are suitable for building ubiquitous applications for ambient intelligence environments. This work presents a video subtitling system that enables the customization and adaptation of subtitles. The benefits of Web applications compared with device-specific native applications for building the solution as well as its current platform support are analyzed. Finally, three different application use cases are presented
    • …
    corecore