3,901 research outputs found

    Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining

    Full text link
    [EN] Rich streams of continuous data are available through Smart Sensors representing a unique opportunity to develop and analyse risk models in healthcare and extract knowledge from data. There is a niche for developing new algorithms, and visualisation and decision support tools to assist health professionals in chronic disease management incorporating data generated through smart sensors in a more precise and personalised manner. However, current understanding of risk models relies on static snapshots of health variables or measures, rather than ongoing and dynamic feedback loops of behaviour, considering changes and different states of patients and diseases. The rationale of this work is to introduce a new method for discovering dynamic risk models for chronic diseases, based on patients¿ dynamic behaviour provided by health sensors, using Process Mining techniques. Results show the viability of this method, three dynamic models have been discovered for the chronic diseases hypertension, obesity, and diabetes, based on the dynamic behaviour of metabolic risk factors associated. This information would support health professionals to translate a one-fits-all current approach to treatments and care, to a personalised medicine strategy, that fits treatments built on patients¿ unique behaviour thanks to dynamic risk modelling taking advantage of the amount data generated by smart sensors.This research was partially funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 727560.Valero Ramon, Z.; Fernández Llatas, C.; Valdivieso, B.; Traver Salcedo, V. (2020). Dynamic Models Supporting Personalised Chronic Disease Management through Healthcare Sensors with Interactive Process Mining. Sensors. 20(18):1-25. https://doi.org/10.3390/s20185330S1252018Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0Brennan, P., Perola, M., van Ommen, G.-J., & Riboli, E. (2017). Chronic disease research in Europe and the need for integrated population cohorts. European Journal of Epidemiology, 32(9), 741-749. doi:10.1007/s10654-017-0315-2Raghupathi, W., & Raghupathi, V. (2018). An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach to Public Health. International Journal of Environmental Research and Public Health, 15(3), 431. doi:10.3390/ijerph15030431Forouzanfar, M. H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., … Charlson, F. J. (2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1659-1724. doi:10.1016/s0140-6736(16)31679-8Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient Monitoring System Based on Internet of Things. Procedia Computer Science, 83, 90-97. doi:10.1016/j.procs.2016.04.103Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625-633. doi:10.1016/j.nbt.2012.03.009Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38Collins, F. S., & Varmus, H. (2015). A New Initiative on Precision Medicine. New England Journal of Medicine, 372(9), 793-795. doi:10.1056/nejmp1500523Glasgow, R. E., Kwan, B. M., & Matlock, D. D. (2018). Realizing the full potential of precision health: The need to include patient-reported health behavior, mental health, social determinants, and patient preferences data. Journal of Clinical and Translational Science, 2(3), 183-185. doi:10.1017/cts.2018.31Whittemore, A. S. (2010). Evaluating health risk models. Statistics in Medicine, 29(23), 2438-2452. doi:10.1002/sim.3991Reynolds, B. C., Roem, J. L., Ng, D. K. S., Matsuda-Abedini, M., Flynn, J. T., Furth, S. L., … Parekh, R. S. (2020). Association of Time-Varying Blood Pressure With Chronic Kidney Disease Progression in Children. JAMA Network Open, 3(2), e1921213. doi:10.1001/jamanetworkopen.2019.21213Campbell, H., Hotchkiss, R., Bradshaw, N., & Porteous, M. (1998). Integrated care pathways. BMJ, 316(7125), 133-137. doi:10.1136/bmj.316.7125.133Schienkiewitz, A., Mensink, G. B. M., & Scheidt-Nave, C. (2012). Comorbidity of overweight and obesity in a nationally representative sample of German adults aged 18-79 years. BMC Public Health, 12(1). doi:10.1186/1471-2458-12-658Must, A. (1999). The Disease Burden Associated With Overweight and Obesity. JAMA, 282(16), 1523. doi:10.1001/jama.282.16.1523Audureau, E., Pouchot, J., & Coste, J. (2016). Gender-Related Differential Effects of Obesity on Health-Related Quality of Life via Obesity-Related Comorbidities. Circulation: Cardiovascular Quality and Outcomes, 9(3), 246-256. doi:10.1161/circoutcomes.115.002127Everhart, J. E., Pettitt, D. J., Bennett, P. H., & Knowler, W. C. (1992). Duration of Obesity Increases the Incidence of NIDDM. Diabetes, 41(2), 235-240. doi:10.2337/diab.41.2.235Wannamethee, S. G. (2005). Overweight and obesity and weight change in middle aged men: impact on cardiovascular disease and diabetes. Journal of Epidemiology & Community Health, 59(2), 134-139. doi:10.1136/jech.2003.015651Ziegelstein, R. C. (2018). Perspectives in Primary Care: Knowing the Patient as a Person in the Precision Medicine Era. The Annals of Family Medicine, 16(1), 4-5. doi:10.1370/afm.2169Tricoli, A., Nasiri, N., & De, S. (2017). Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 27(15), 1605271. doi:10.1002/adfm.201605271Saponara, S., Donati, M., Fanucci, L., & Celli, A. (2016). An Embedded Sensing and Communication Platform, and a Healthcare Model for Remote Monitoring of Chronic Diseases. Electronics, 5(4), 47. doi:10.3390/electronics5030047Alvarez, C., Rojas, E., Arias, M., Munoz-Gama, J., Sepúlveda, M., Herskovic, V., & Capurro, D. (2018). Discovering role interaction models in the Emergency Room using Process Mining. Journal of Biomedical Informatics, 78, 60-77. doi:10.1016/j.jbi.2017.12.015Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Shahar, Y. (1997). A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90(1-2), 79-133. doi:10.1016/s0004-3702(96)00025-2Orphanou, K., Stassopoulou, A., & Keravnou, E. (2016). DBN-Extended: A Dynamic Bayesian Network Model Extended With Temporal Abstractions for Coronary Heart Disease Prognosis. IEEE Journal of Biomedical and Health Informatics, 20(3), 944-952. doi:10.1109/jbhi.2015.2420534Spruijt-Metz, D., Hekler, E., Saranummi, N., Intille, S., Korhonen, I., Nilsen, W., … Pavel, M. (2015). Building new computational models to support health behavior change and maintenance: new opportunities in behavioral research. Translational Behavioral Medicine, 5(3), 335-346. doi:10.1007/s13142-015-0324-1Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., … Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Ibanez-Sanchez, G., Fernandez-Llatas, C., Martinez-Millana, A., Celda, A., Mandingorra, J., Aparici-Tortajada, L., … Traver, V. (2019). Toward Value-Based Healthcare through Interactive Process Mining in Emergency Rooms: The Stroke Case. International Journal of Environmental Research and Public Health, 16(10), 1783. doi:10.3390/ijerph16101783Chambers, D. A., Feero, W. G., & Khoury, M. J. (2016). Convergence of Implementation Science, Precision Medicine, and the Learning Health Care System. JAMA, 315(18), 1941. doi:10.1001/jama.2016.3867Cameranesi, M., Diamantini, C., Mircoli, A., Potena, D., & Storti, E. (2020). Extraction of User Daily Behavior From Home Sensors Through Process Discovery. IEEE Internet of Things Journal, 7(9), 8440-8450. doi:10.1109/jiot.2020.2990537Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884Makaroff, L. E. (2017). The need for international consensus on prediabetes. The Lancet Diabetes & Endocrinology, 5(1), 5-7. doi:10.1016/s2213-8587(16)30328-xShiue, I., McMeekin, P., & Price, C. (2017). Retrospective observational study of emergency admission, readmission and the ‘weekend effect’. BMJ Open, 7(3), e012493. doi:10.1136/bmjopen-2016-01249

    Dynamic Risk Models for Characterising Chronic Diseases' Behaviour Using Process Mining Techniques

    Full text link
    [ES] Los modelos de riesgo en el ámbito de la salud son métodos estadísticos que brindan advertencias tempranas sobre el riesgo de una persona de sufrir un episodio adverso en el futuro. Por lo general, utilizan la información almacenada de forma rutinaria en los sistemas de información hospitalaria para ofrecer una probabilidad individual de desarrollar un resultado negativo futuro en un período determinado. Concretamente, en el campo de las enfermedades crónicas que comparten factores de riesgo comunes, los modelos de riesgo se basan en el análisis de esos factores de riesgo -tensión arterial elevada, glucemia elevada, lípidos sanguíneos anormales, sobrepeso y obesidad- y sus medidas biométricas asociadas. Estas medidas se recopilan durante la práctica clínica de manera periódica y, se incorporan a los modelos de riesgo para apoyar a los médicos en la toma de decisiones. Para crear modelos de riesgo que incluyan la variable temporal, se podrían utilizar técnicas basadas en datos (Data-Driven), de forma que se tuviera en cuenta el historial de los pacientes almacenado en los registros médicos electrónicos, extrayendo conocimiento de los datos en bruto. Sin embargo, en el ámbito de la salud, los resultados de la minería de datos suelen ser percibidos por los expertos en salud como cajas negras y, en consecuencia, no confían en sus decisiones. El paradigma Interactivo permite a los expertos comprender los resultados, para que los profesionales puedan corregir esos modelos de acuerdo con su conocimiento y experiencia, proporcionando modelos perceptivos y cognitivos. En este contexto, la minería de procesos es una técnica de minería de datos que permite la implementación del paradigma Interactivo, ofreciendo una comprensión clara del proceso de atención y proporcionando modelos comprensibles para el ser humano. Las condiciones crónicas generalmente se describen mediante imágenes estáticas de variables, como factores genéticos, fisiológicos, ambientales y de comportamiento. Sin embargo, la perspectiva dinámica, temporal y de comportamiento no se consideran comúnmente en los modelos de riesgo. Eso significa que el último estado de riesgo se convierte en el estado real del paciente. No obstante, la condición de los pacientes podría verse influenciada por sus condiciones dinámicas pasadas. El objetivo de esta tesis es proporcionar una visión novedosa del riesgo asociado a un paciente, basada en tecnologías Data-Driven que ofrezcan una visión dinámica de su evolución con respecto a su condición crónica. Técnicamente, supone abordar los modelos de riesgo incorporando la perspectiva dinámica y comportamental de los pacientes gracias a la información incluida en la Historia Clínica Electrónica. Los resultados obtenidos a lo largo de esta tesis muestran cómo las tecnologías de minería de procesos pueden aportar una visión dinámica e interactiva de los modelos de riesgo de enfermedades crónicas. Estos resultados pueden ayudar a los profesionales de la salud en la práctica diaria para una mejor comprensión del estado de salud de los pacientes y una mejor clasificación de su estado de riesgo.[CA] Els models de risc en l'àmbit de la salut són mètodes estadístics que brinden advertències primerenques sobre el risc d'una persona de patir un episodi advers en el futur. Generalment, utilitzen la informació emmagatzemada de forma rutinària en els sistemes d'informació hospitalària per a oferir una probabilitat individual de desenrotllar un resultat negatiu futur en un període determinat. Concretament, en el camp de les malalties cròniques que compartixen factors de risc comú, els models de risc es basen en l'anàlisi d'eixos factors de risc -tensió arterial elevada, glucèmia elevada, lípids sanguinis anormals, sobrecàrrega i obesitat- i les seues mesures biomètriques associades. Estes mesures es recopilen durant la pràctica clínica ben sovint de manera periòdica i, en conseqüència, s'incorporen als models de risc i recolzen la presa de decisions dels metges. Per a crear estos models de risc que incloguen la variable temporal es podrien utilitzar tècniques basades en dades (Data-Driven) , de manera que es tinguera en compte l'historial dels pacients disponible en els registres mèdics electrònics, extraient coneixement de les dades en brut. No obstant això, en l'àmbit de la salut, els resultats de la mineria de dades solen ser percebuts pels experts en salut com a caixes negres i, en conseqüència, no confien en les decisions dels algoritmes. El paradigma Interactiu permet als experts comprendre els resultats, perquè els professionals puguen corregir eixos models d'acord amb el seu coneixement i experiència, proporcionant models perceptius i cognitius. En este context, la mineria de processos és una tècnica de mineria de dades que permet la implementació del paradigma Interactiu, oferint una comprensió clara del procés d'atenció i proporcionant models comprensibles per al ser humà. Les condicions cròniques generalment es descriuen per mitjà d'imatges estàtiques de variables, com a factors genètics, fisiològics, ambientals i de comportament. No obstant això, la perspectiva dinàmica, temporal i de comportament no es consideren comunament en els models de risc. Això significa que l'últim estat de risc es convertix en l'estat real del pacient. No obstant això, la condició dels pacients podria veure's influenciada per les seues condicions dinàmiques passades. L'objectiu d'esta tesi és proporcionar una visió nova del risc, associat a un pacient, basada en tecnologies Data-Driven que oferisquen una visió dinàmica de l'evo\-lució dels pacients respecte a la seua condició crònica. Tècnicament, suposa abordar els models de risc incorporant la perspectiva dinàmica i el comportament dels pacients als models de risc gràcies a la informació inclosa en la Història Clínica Electrònica. Els resultats obtinguts al llarg d'esta tesi mostren com les tecnologies de mineria de processos poden aportar una visió dinàmica i interactiva dels models de risc de malalties cròniques. Estos resultats poden ajudar els professionals de la salut en la pràctica diària per a una millor comprensió de l'estat de salut dels pacients i una millor classificació del seu estat de risc.[EN] Risk models in the healthcare domain are statistical methods that provide early warnings about a person's risk for an adverse episode in the future. They usually use the information routinely stored in Hospital Information Systems to offer an individual probability for developing a future negative outcome in a given period. Concretely, in the field of chronic diseases that share common risk factors, risk models are based on the analysis of those risk factors -raised blood pressure, raised glucose levels, abnormal blood lipids, and overweight and obesity- and their associated biometric measures. These measures are collected during clinical practice frequently in a periodic manner, and accordingly, they are incorporated into the risk models to support clinicians' decision-making. Data-Driven techniques could be used to create these temporal-aware risk models, considering the patients' history included in Electronic Health Records, and extracting knowledge from raw data. However, in the healthcare domain, Data Mining results are usually perceived by the health experts as black-boxes, and in consequence, they do not trust in the algorithms' decisions. The Interactive paradigm allows experts to understand the results, in that sense, professionals can correct those models according to their knowledge and experience, providing perceptual and cognitive models. In this context, Process Mining is a Data Mining technique that enables the implementation of the Interactive paradigm, offering a clear care process understanding and providing human-understandable models. Chronic conditions are usually described by static pictures of variables, such as genetic, physiological, environmental, and behavioural factors. Nevertheless, the dynamic, temporal, and behavioural perspectives are not commonly considered in the risk models. That means the last status of the risk becomes the actual status of the patient. However, the patients' condition could be influenced by their past dynamic circumstances. The objective of this thesis is to provide a novel risk vision based on Data-Driven technologies offering a dynamic view of the patients' evolution regarding their chro\-nic condition. Technically, it supposes to approach risk models incorporating the dynamic and behavioural perspective of patients to the risk models thanks to the information included in the Electronic Health Records. The results obtained throughout this thesis show how Process Mining technologies can bring a dynamic and interactive view of chronic disease risk models. These results can support health professionals in daily practice for a better understanding of the patients' health condition and a better classification of their risk status.Valero Ramón, Z. (2022). Dynamic Risk Models for Characterising Chronic Diseases' Behaviour Using Process Mining Techniques [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181652TESI

    Digital healthcare empowering Europeans:proceedings of MIE2015

    Get PDF

    Meaningful Big Data Integration For a Global COVID-19 Strategy

    Get PDF
    Abstract With the rapid spread of the COVID-19 pandemic, the novel Meaningful Integration of Data Analytics and Services (MIDAS) platform quickly demonstrates its value, relevance and transferability to this new global crisis. The MIDAS platform enables the connection of a large number of isolated heterogeneous data sources, and combines rich datasets including open and social data, ingesting and preparing these for the application of analytics, monitoring and research tools. These platforms will assist public health author ities in: (i) better understanding the disease and its impact; (ii) monitoring the different aspects of the evolution of the pandemic across a diverse range of groups; (iii) contributing to improved resilience against the impacts of this global crisis; and (iv) enhancing preparedness for future public health emergencies. The model of governance and ethical review, incorporated and defined within MIDAS, also addresses the complex privacy and ethical issues that the developing pandemic has highlighted, allowing oversight and scrutiny of more and richer data sources by users of the system

    Using ontologies to map between research data and policymakers’ presumptions: the experience of the KNOWMAK project

    Get PDF
    Understanding knowledge co-creation in key emerging areas of European research is critical for policy makers wishing to analyze impact and make strategic decisions. However, purely data-driven methods for characterising policy topics have limitations relating to the broad nature of such topics and the differences in language and topic structure between the political language and scientific and technological outputs. In this paper, we discuss the use of ontologies and semantic technologies as a means to bridge the linguistic and conceptual gap between policy questions and data sources for characterising European knowledge production. Our experience suggests that the integration between advanced techniques for language processing and expert assessment at critical junctures in the process is key for the success of this endeavour

    Social media analytics: a survey of techniques, tools and platforms

    Get PDF
    This paper is written for (social science) researchers seeking to analyze the wealth of social media now available. It presents a comprehensive review of software tools for social networking media, wikis, really simple syndication feeds, blogs, newsgroups, chat and news feeds. For completeness, it also includes introductions to social media scraping, storage, data cleaning and sentiment analysis. Although principally a review, the paper also provides a methodology and a critique of social media tools. Analyzing social media, in particular Twitter feeds for sentiment analysis, has become a major research and business activity due to the availability of web-based application programming interfaces (APIs) provided by Twitter, Facebook and News services. This has led to an ‘explosion’ of data services, software tools for scraping and analysis and social media analytics platforms. It is also a research area undergoing rapid change and evolution due to commercial pressures and the potential for using social media data for computational (social science) research. Using a simple taxonomy, this paper provides a review of leading software tools and how to use them to scrape, cleanse and analyze the spectrum of social media. In addition, it discussed the requirement of an experimental computational environment for social media research and presents as an illustration the system architecture of a social media (analytics) platform built by University College London. The principal contribution of this paper is to provide an overview (including code fragments) for scientists seeking to utilize social media scraping and analytics either in their research or business. The data retrieval techniques that are presented in this paper are valid at the time of writing this paper (June 2014), but they are subject to change since social media data scraping APIs are rapidly changing
    corecore