8,490 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    TEACHING STRATEGIES AND THE PROBLEM FACED BY EFL TEACHER DURING COVID-19 OUTBREAK AT JUNIOR HIGH SCHOOL

    Get PDF
    The education system have to switch from face-to-face to online teaching due to the pandemic. This situation is considered new in Indonesia, the teachers have to adapt their self with this situation. An example is learning to use technology in online teaching and making a lesson plan that can make students interested in online learning.This research aimed to know what are teaching strategies used by EFL teachers and what are the teacher problems in online teaching at the Junior High School 98 during Pandemic. This research used qualitative as a design and narrative descriptive as the approach. The technique to collect the data researcher used in this research is observation, interview, and documentation. In addition, the object of this research is EFL teachers, the researcher interviewed 5 EFL teachers. The results of this research are: 1)The teacher strategies used in online teaching during a pandemic is synchronous, while teacher used platform WhatsApp, Google Classroom, and Google Meet for online classes. In addition, to create the task the teacher gives chance to the students to useanother platform such as Canva, Youtube, Video Maker, etc. On the other hand, the teacher have some strategies to overcome the problems when teaching online, such as when the students have a problem in the following class online through the platform Google Meet, the teacher shared the material in Google Classroom. While, the researcher found in students motivation the teacher do teamwork with students’ parents in control the students at home; 2) the teaching online problems that researcher found in this research are: lack of quota package, lack of internet access, lack of motivation, and lack of facilities

    Design Justice Principles and Do-It-Yourself Assistive Technology: Case Study

    Get PDF
    In this project, we focus on the Principles of Design Justice, as developed by the Design Justice Network, a community committed to challenging structural inequalities of design. Our thesis research project is aligned with the premise of user-centered design and the situated knowledge in third paradigm of HCI. We examine some of the current processes for Do-It-Yourself Assistive Technology (DIY-AT) development and deployment using the works of Makers Making Change (MMC). MMC connects the makers of DIY-AT devices to people who need AT devices. We also examine the impacts of the ongoing COVID-19 pandemic on the need for DIY-AT and the challenges it might have caused. Our findings include MMC's positive impact regarding DIY-AT service delivery, engaging local makers into making DIY-AT, and a modest job in integrating Design Justice Principles. The findings of our study also suggest an increase in the demand for AT due to the pandemic

    Graphical scaffolding for the learning of data wrangling APIs

    Get PDF
    In order for students across the sciences to avail themselves of modern data streams, they must first know how to wrangle data: how to reshape ill-organised, tabular data into another format, and how to do this programmatically, in languages such as Python and R. Despite the cross-departmental demand and the ubiquity of data wrangling in analytical workflows, the research on how to optimise the instruction of it has been minimal. Although data wrangling as a programming domain presents distinctive challenges - characterised by on-the-fly syntax lookup and code example integration - it also presents opportunities. One such opportunity is how tabular data structures are easily visualised. To leverage the inherent visualisability of data wrangling, this dissertation evaluates three types of graphics that could be employed as scaffolding for novices: subgoal graphics, thumbnail graphics, and parameter graphics. Using a specially built e-learning platform, this dissertation documents a multi-institutional, randomised, and controlled experiment that investigates the pedagogical effects of these. Our results indicate that the graphics are well-received, that subgoal graphics boost the completion rate, and that thumbnail graphics improve navigability within a command menu. We also obtained several non-significant results, and indications that parameter graphics are counter-productive. We will discuss these findings in the context of general scaffolding dilemmas, and how they fit into a wider research programme on data wrangling instruction

    Industry 4.0: product digital twins for remanufacturing decision-making

    Get PDF
    Currently there is a desire to reduce natural resource consumption and expand circular business principles whilst Industry 4.0 (I4.0) is regarded as the evolutionary and potentially disruptive movement of technology, automation, digitalisation, and data manipulation into the industrial sector. The remanufacturing industry is recognised as being vital to the circular economy (CE) as it extends the in-use life of products, but its synergy with I4.0 has had little attention thus far. This thesis documents the first investigating into I4.0 in remanufacturing for a CE contributing a design and demonstration of a model that optimises remanufacturing planning using data from different instances in a product’s life cycle. The initial aim of this work was to identify the I4.0 technology that would enhance the stability in remanufacturing with a view to reducing resource consumption. As the project progressed it narrowed to focus on the development of a product digital twin (DT) model to support data-driven decision making for operations planning. The model’s architecture was derived using a bottom-up approach where requirements were extracted from the identified complications in production planning and control that differentiate remanufacturing from manufacturing. Simultaneously, the benefits of enabling visibility of an asset’s through-life health were obtained using a DT as the modus operandi. A product simulator and DT prototype was designed to use Internet of Things (IoT) components, a neural network for remaining life estimations and a search algorithm for operational planning optimisation. The DT was iteratively developed using case studies to validate and examine the real opportunities that exist in deploying a business model that harnesses, and commodifies, early life product data for end-of-life processing optimisation. Findings suggest that using intelligent programming networks and algorithms, a DT can enhance decision-making if it has visibility of the product and access to reliable remanufacturing process information, whilst existing IoT components provide rudimentary “smart” capabilities, but their integration is complex, and the durability of the systems over extended product life cycles needs to be further explored

    Safe and seamless transfer of control authority - exploring haptic shared control during handovers

    Get PDF
    This research aimed at investigating the impact of lateral assistance systems on drivers' performance and behaviour during transitions from Highly Automated Driving (HAD). The thesis focused on non-critical transitions and analysed the differences between system and user-initiated transitions. Hence, two experiments were developed and conducted in driving simulators to address questions relating to how handover procedures, which provide varying levels of lateral assistance, affect drivers' performance and behaviour at different stages of the transition. In particular, it was investigated which type of assistance yields better results depending on who initiated the transition of control. Drivers were induced to be Out-Of-The-Loop (OOTL) during periods of HAD and then exposed to both system and user-initiated transitions. Results showed that after user-initiated transitions, drivers were generally more engaged with the steering task and the provided assistance was not helpful and, in some cases, caused steering conflicts and a comfort drop. On the contrary, after system-initiated transitions, drivers were not engaged with the steering control and were more prone to gaze wandering. Strong lateral assistance proved to be most beneficial within the first 5 seconds of the transition, when drivers were not committed to the steering control. The provision of assistance at an operational level, namely when drivers had to keep the lane centre, was not enough to ensure good performance at a tactical level. Drivers were able to cope with tactical tasks, presented as lane changes, only after around 10 seconds from the start of the transitions in both user and system initiated cases (Chapter 3 and Chapter 4). The introduction of non-continuous lateral assistance, used to trigger steering conflicts and, in turn, a faster steering engagement, did not yield particular benefits during user-initiated transitions but it might have triggered a faster re-engagement process in system-initiated ones (Chapter 5). The results suggest that assisting drivers after user-initiated transitions is not advisable as the assistance might induce steering conflicts. On the contrary, it is extremely beneficial to assist drivers during system-initiated transitions because of their low engagement with the driving task. The thesis concludes with a general overview of the conducted studies and a discussion on future studies to take this research forward

    Designing a Fusion Power Plant with Superconducting Training Magnets

    Get PDF
    Fusion power has the potential to revolutionise global energy production with a reliable, low CO2 (not zero due to the use of steel, concrete etc. that typically produce CO2 during manufacture), low radioactivity power supply, that is readily available at the point of need. The ITER and SPARC reactors are already under construction, with plans to begin full-power (Qfus ≥ 10) operation in the early 2030s; proving that fusion is a viable energy source. To see wide adoption however, reactors must be made as commercially attractive as possible. Here we present superconducting pilot reactor designs that have been optimised for minimum capital cost using the PROCESS systems code. Key design choices were made using technologies that are either available now or already in development; with concentrated effort these reactors could be built on 2030-2040 timescales. We focus primarily on the reactor from this set with the lowest overall capital cost, our “preferred” reactor: a 100 MW net electricity producing tokamak with REBCO superconducting toroidal field coils and central solenoid and Nb-Ti superconducting poloidal field coils. In addition, we have investigated using ductile, remountable Nb-Ti training coils (named after the training wheels of children’s bicycles) during the commissioning phase of a reactor to remove the risk of brittle failure of the full-power magnets during this stage. Such magnets would operate at lower field, but would enable thorough machine testing. Finally, we investigate and predict how advances in magnet technologies could effect our preferred reactor design and cost, and conclude that the effects of such advances do not justify waiting yet longer before beginning detailed reactor design and construction

    The European Spallation Source neutrino super-beam conceptual design report

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMA design study, named ESS νSB for European Spallation Source neutrino Super Beam, has been carried out during the years 2018–2022 of how the 5 MW proton linear accelerator of the European Spallation Source under construction in Lund, Sweden, can be used to produce the world’s most intense long-baseline neutrino beam. The high beam intensity will allow for measuring the neutrino oscillations near the second oscillation maximum at which the CP violation signal is close to three times higher than at the first maximum, where other experiments measure. This will enable CP violation discovery in the leptonic sector for a wider range of values of the CP violating phase δCP and, in particular, a higher precision measurement of δCP. The present Conceptual Design Report describes the results of the design study of the required upgrade of the ESS linac, of the accumulator ring used to compress the linac pulses from 2.86 ms to 1.2 μs, and of the target station, where the 5 MW proton beam is used to produce the intense neutrino beam. It also presents the design of the near detector, which is used to monitor the neutrino beam as well as to measure neutrino cross sections, and of the large underground far detector located 360 km from ESS, where the magnitude of the oscillation appearance of νe from νμ is measured. The physics performance of the ESS νSB research facility has been evaluated demonstrating that after 10 years of data-taking, leptonic CP violation can be detected with more than 5 standard deviation significance over 70% of the range of values that the CP violation phase angle δCP can take and that δCP can be measured with a standard error less than 8° irrespective of the measured value of δCP. These results demonstrate the uniquely high physics performance of the proposed ESS νSB research facilit
    • …
    corecore