5,022 research outputs found

    Interactive 3D Modeling with a Generative Adversarial Network

    Full text link
    This paper proposes the idea of using a generative adversarial network (GAN) to assist a novice user in designing real-world shapes with a simple interface. The user edits a voxel grid with a painting interface (like Minecraft). Yet, at any time, he/she can execute a SNAP command, which projects the current voxel grid onto a latent shape manifold with a learned projection operator and then generates a similar, but more realistic, shape using a learned generator network. Then the user can edit the resulting shape and snap again until he/she is satisfied with the result. The main advantage of this approach is that the projection and generation operators assist novice users to create 3D models characteristic of a background distribution of object shapes, but without having to specify all the details. The core new research idea is to use a GAN to support this application. 3D GANs have previously been used for shape generation, interpolation, and completion, but never for interactive modeling. The new challenge for this application is to learn a projection operator that takes an arbitrary 3D voxel model and produces a latent vector on the shape manifold from which a similar and realistic shape can be generated. We develop algorithms for this and other steps of the SNAP processing pipeline and integrate them into a simple modeling tool. Experiments with these algorithms and tool suggest that GANs provide a promising approach to computer-assisted interactive modeling.Comment: Published at International Conference on 3D Vision 2017 (http://irc.cs.sdu.edu.cn/3dv/index.html

    TextureGAN: Controlling Deep Image Synthesis with Texture Patches

    Full text link
    In this paper, we investigate deep image synthesis guided by sketch, color, and texture. Previous image synthesis methods can be controlled by sketch and color strokes but we are the first to examine texture control. We allow a user to place a texture patch on a sketch at arbitrary locations and scales to control the desired output texture. Our generative network learns to synthesize objects consistent with these texture suggestions. To achieve this, we develop a local texture loss in addition to adversarial and content loss to train the generative network. We conduct experiments using sketches generated from real images and textures sampled from a separate texture database and results show that our proposed algorithm is able to generate plausible images that are faithful to user controls. Ablation studies show that our proposed pipeline can generate more realistic images than adapting existing methods directly.Comment: CVPR 2018 spotligh

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu

    Visual Object Networks: Image Generation with Disentangled 3D Representation

    Full text link
    Recent progress in deep generative models has led to tremendous breakthroughs in image generation. However, while existing models can synthesize photorealistic images, they lack an understanding of our underlying 3D world. We present a new generative model, Visual Object Networks (VON), synthesizing natural images of objects with a disentangled 3D representation. Inspired by classic graphics rendering pipelines, we unravel our image formation process into three conditionally independent factors---shape, viewpoint, and texture---and present an end-to-end adversarial learning framework that jointly models 3D shapes and 2D images. Our model first learns to synthesize 3D shapes that are indistinguishable from real shapes. It then renders the object's 2.5D sketches (i.e., silhouette and depth map) from its shape under a sampled viewpoint. Finally, it learns to add realistic texture to these 2.5D sketches to generate natural images. The VON not only generates images that are more realistic than state-of-the-art 2D image synthesis methods, but also enables many 3D operations such as changing the viewpoint of a generated image, editing of shape and texture, linear interpolation in texture and shape space, and transferring appearance across different objects and viewpoints.Comment: NeurIPS 2018. Code: https://github.com/junyanz/VON Website: http://von.csail.mit.edu
    corecore