6,311 research outputs found

    RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal Graph Convolutional Networks

    Full text link
    A key aspect of driving a road vehicle is to interact with the other road users, assess their intentions and make risk-aware tactical decisions. An intuitive approach of enabling an intelligent automated driving system would be to incorporate some aspects of the human driving behavior. To this end, we propose a novel driving framework for egocentric views, which is based on spatio-temporal traffic graphs. The traffic graphs not only model the spatial interactions amongst the road users, but also their individual intentions through temporally associated message passing. We leverage spatio-temporal graph convolutional network (ST-GCN) to train the graph edges. These edges are formulated using parameterized functions of 3D positions and scene-aware appearance features of road agents. Along with tactical behavior prediction, it is crucial to evaluate the risk assessing ability of the proposed framework. We claim that our framework learns risk aware representations by improving on the task of risk object identification, especially in identifying objects with vulnerable interactions like pedestrians and cyclists

    Rank2Tell: A Multimodal Driving Dataset for Joint Importance Ranking and Reasoning

    Full text link
    The widespread adoption of commercial autonomous vehicles (AVs) and advanced driver assistance systems (ADAS) may largely depend on their acceptance by society, for which their perceived trustworthiness and interpretability to riders are crucial. In general, this task is challenging because modern autonomous systems software relies heavily on black-box artificial intelligence models. Towards this goal, this paper introduces a novel dataset, Rank2Tell, a multi-modal ego-centric dataset for Ranking the importance level and Telling the reason for the importance. Using various close and open-ended visual question answering, the dataset provides dense annotations of various semantic, spatial, temporal, and relational attributes of various important objects in complex traffic scenarios. The dense annotations and unique attributes of the dataset make it a valuable resource for researchers working on visual scene understanding and related fields. Further, we introduce a joint model for joint importance level ranking and natural language captions generation to benchmark our dataset and demonstrate performance with quantitative evaluations

    Driver-centric Risk Object Identification

    Full text link
    A massive number of traffic fatalities are due to driver errors. To reduce fatalities, developing intelligent driving systems assisting drivers to identify potential risks is in urgent need. Risky situations are generally defined based on collision prediction in existing research. However, collisions are only one type of risk in traffic scenarios. We believe a more generic definition is required. In this work, we propose a novel driver-centric definition of risk, i.e., risky objects influence driver behavior. Based on this definition, a new task called risk object identification is introduced. We formulate the task as a cause-effect problem and present a novel two-stage risk object identification framework, taking inspiration from models of situation awareness and causal inference. A driver-centric Risk Object Identification (ROI) dataset is curated to evaluate the proposed system. We demonstrate state-of-the-art risk object identification performance compared with strong baselines on the ROI dataset. In addition, we conduct extensive ablative studies to justify our design choices.Comment: Submitted to TPAM

    Behavioral Intention Prediction in Driving Scenes: A Survey

    Full text link
    In the driving scene, the road agents usually conduct frequent interactions and intention understanding of the surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. Behavioral Intention Prediction (BIP) simulates such a human consideration process and fulfills the early prediction of specific behaviors. Similar to other prediction tasks, such as trajectory prediction, data-driven deep learning methods have taken the primary pipeline in research. The rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. Based on the investigation, data-driven deep learning approaches have become the primary pipelines. The behavioral intention types are still monotonous in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, for the safe-critical scenarios (e.g., near-crashing situations), current research is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research.Comment: 254 reference
    • …
    corecore