126,916 research outputs found

    Boundary, Brightness, and Depth Interactions During Preattentive Representation and Attentive Recognition of Figure and Ground

    Full text link
    This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100

    Linking Visual Cortical Development to Visual Perception

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Filling-in the Forms: Surface and Boundary Interactions in Visual Cortex

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-l-0409); Office of Naval Research (NOOO14-95-1-0657)

    A Neural Network Model for the Development of Simple and Complex Cell Receptive Fields Within Cortical Maps of Orientation and Ocular Dominance

    Full text link
    Prenatal development of the primary visual cortex leads to simple cells with spatially distinct and oriented ON and OFF subregions. These simple cells are organized into spatial maps of orientation and ocular dominance that exhibit singularities, fractures, and linear zones. On a finer spatial scale, simple cells occur that are sensitive to similar orientations but opposite contrast polarities, and exhibit both even-symmetric and odd-symmetric receptive fields. Pooling of outputs from oppositely polarized simple cells leads to complex cells that respond to both contrast polarities. A neural network model is described which simulates how simple and complex cells self-organize starting from unsegregated and unoriented geniculocortical inputs during prenatal development. Neighboring simple cells that are sensitive to opposite contrast polarities develop from a combination of spatially short-range inhibition and high-gain recurrent habituative excitation between cells that obey membrane equations. Habituation, or depression, of synapses controls reset of cell activations both through enhanced ON responses and OFF antagonistic rebounds. Orientation and ocular dominance maps form when high-gain medium-range recurrent excitation and long-range inhibition interact with the short-range mechanisms. The resulting structure clarifies how simple and complex cells contribute to perceptual processes such as texture segregation and perceptual grouping.Air Force Office of Scientific Research (F49620-92-J-0334); British Petroleum (BP 89A-1204); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409

    A Simple Cell Model with Multiple Spatial Frequency Selectivity and Linear/Non-Linear Response Properties

    Full text link
    A model is described for cortical simple cells. Simple cells are selective for local contrast polarity, signaling light-dark and dark-light transitions. The proposed new architecture exhibits both linear and non-linear properties of simple cells. Linear responses are obtained by integration of the input stimulus within subfields of the cells, and by combinations of them. Non-linear behavior can be seen in the selectivity for certain features that can be characterized by the spatial arrangement of activations generated by initial on- and off-cells (center-surround). The new model also exhibits spatial frequency selectivity with the generation of multi-scale properties being based on a single-scale band-pass input that is generated by the initial (retinal) center-surround processing stage.German BMFT grant (413-5839-01 IN 101 C/1); CNPq and NUTES/UFRJ, Brazi

    Computing motion in the primate's visual system

    Get PDF
    Computing motion on the basis of the time-varying image intensity is a difficult problem for both artificial and biological vision systems. We will show how one well-known gradient-based computer algorithm for estimating visual motion can be implemented within the primate's visual system. This relaxation algorithm computes the optical flow field by minimizing a variational functional of a form commonly encountered in early vision, and is performed in two steps. In the first stage, local motion is computed, while in the second stage spatial integration occurs. Neurons in the second stage represent the optical flow field via a population-coding scheme, such that the vector sum of all neurons at each location codes for the direction and magnitude of the velocity at that location. The resulting network maps onto the magnocellular pathway of the primate visual system, in particular onto cells in the primary visual cortex (V1) as well as onto cells in the middle temporal area (MT). Our algorithm mimics a number of psychophysical phenomena and illusions (perception of coherent plaids, motion capture, motion coherence) as well as electrophysiological recordings. Thus, a single unifying principle ‘the final optical flow should be as smooth as possible’ (except at isolated motion discontinuities) explains a large number of phenomena and links single-cell behavior with perception and computational theory

    A Neural Model of How Horizontal and Interlaminar Connections of Visual Cortex Develop into Adult Circuits that Carry Out Perceptual Grouping and Learning

    Full text link
    A neural model suggests how horizontal and interlaminar connections in visual cortical areas Vl and V2 develop within a laminar cortical architecture and give rise to adult visual percepts. The model suggests how mechanisms that control cortical development in the infant lead to properties of adult cortical anatomy, neurophysiology, and visual perception. The model clarifies how excitatory and inhibitory connections can develop stably by maintaining a balance between excitation and inhibition. The growth of long-range excitatory horizontal connections between layer 2/3 pyramidal cells is balanced against that of short-range disynaptic interneuronal connections. The growth of excitatory on-center connections from layer 6-to-4 is balanced against that of inhibitory interneuronal off-surround connections. These balanced connections interact via intracortical and intercortical feedback to realize properties of perceptual grouping, attention, and perceptual learning in the adult, and help to explain the observed variability in the number and temporal distribution of spikes emitted by cortical neurons. The model replicates cortical point spread functions and psychophysical data on the strength of real and illusory contours. The on-center off-surround layer 6-to-4 circuit enables top-clown attentional signals from area V2 to modulate, or attentionally prime, layer 4 cells in area Vl without fully activating them. This modulatory circuit also enables adult perceptual learning within cortical area Vl and V2 to proceed in a stable way.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    A Unified Model of Spatiotemporal Processing in the Retina

    Full text link
    A computational model of visual processing in the vertebrate retina provides a unified explanation of a range of data previously treated by disparate models. Three results are reported here: the model proposes a functional explanation for the primary feed-forward retinal circuit found in vertebrate retinae, it shows how this retinal circuit combines nonlinear adaptation with the desirable properties of linear processing, and it accounts for the origin of parallel transient (nonlinear) and sustained (linear) visual processing streams as simple variants of the same retinal circuit. The retina, owing to its accessibility and to its fundamental role in the initial transduction of light into neural signals, is among the most extensively studied neural structures in the nervous system. Since the pioneering anatomical work by Ramón y Cajal at the turn of the last century[1], technological advances have abetted detailed descriptions of the physiological, pharmacological, and functional properties of many types of retinal cells. However, the relationship between structure and function in the retina is still poorly understood. This article outlines a computational model developed to address fundamental constraints of biological visual systems. Neurons that process nonnegative input signals-such as retinal illuminance-are subject to an inescapable tradeoff between accurate processing in the spatial and temporal domains. Accurate processing in both domains can be achieved with a model that combines nonlinear mechanisms for temporal and spatial adaptation within three layers of feed-forward processing. The resulting architecture is structurally similar to the feed-forward retinal circuit connecting photoreceptors to retinal ganglion cells through bipolar cells. This similarity suggests that the three-layer structure observed in all vertebrate retinae[2] is a required minimal anatomy for accurate spatiotemporal visual processing. This hypothesis is supported through computer simulations showing that the model's output layer accounts for many properties of retinal ganglion cells[3],[4],[5],[6]. Moreover, the model shows how the retina can extend its dynamic range through nonlinear adaptation while exhibiting seemingly linear behavior in response to a variety of spatiotemporal input stimuli. This property is the basis for the prediction that the same retinal circuit can account for both sustained (X) and transient (Y) cat ganglion cells[7] by simple morphological changes. The ability to generate distinct functional behaviors by simple changes in cell morphology suggests that different functional pathways originating in the retina may have evolved from a unified anatomy designed to cope with the constraints of low-level biological vision.Sloan Fellowshi
    • …
    corecore