4 research outputs found

    Data Engineering for the Analysis of Semiconductor Manufacturing Data

    Get PDF
    We have analyzed manufacturing data from several different semiconductor manufacturing plants, using decision tree induction software called Q-YIELD. The software generates rules for predicting when a given product should be rejected. The rules are intended to help the process engineers improve the yield of the product, by helping them to discover the causes of rejection. Experience with Q-YIELD has taught us the importance of data engineering -- preprocessing the data to enable or facilitate decision tree induction. This paper discusses some of the data engineering problems we have encountered with semiconductor manufacturing data. The paper deals with two broad classes of problems: engineering the features in a feature vector representation and engineering the definition of the target concept (the classes). Manufacturing process data present special problems for feature engineering, since the data have multiple levels of granularity (detail, resolution). Engineering the target concept is important, due to our focus on understanding the past, as opposed to the more common focus in machine learning on predicting the future

    Technical note: Bias and the quantification of stability

    Get PDF
    Research on bias in machine learning algorithms has generally been concerned with the impact of bias on predictive accuracy. We believe that there are other factors that should also play a role in the evaluation of bias. One such factor is the stability of the algorithm; in other words, the repeatability of the results. If we obtain two sets of data from the same phenomenon, with the same underlying probability distribution, then we would like our learning algorithm to induce approximately the same concepts from both sets of data. This paper introduces a method for quantifying stability, based on a measure of the agreement between concepts. We also discuss the relationships among stability, predictive accuracy, and bias
    corecore