13,064 research outputs found

    PIKS: A Technique to Identify Actionable Trends for Policy-Makers Through Open Healthcare Data

    Full text link
    With calls for increasing transparency, governments are releasing greater amounts of data in multiple domains including finance, education and healthcare. The efficient exploratory analysis of healthcare data constitutes a significant challenge. Key concerns in public health include the quick identification and analysis of trends, and the detection of outliers. This allows policies to be rapidly adapted to changing circumstances. We present an efficient outlier detection technique, termed PIKS (Pruned iterative-k means searchlight), which combines an iterative k-means algorithm with a pruned searchlight based scan. We apply this technique to identify outliers in two publicly available healthcare datasets from the New York Statewide Planning and Research Cooperative System, and California's Office of Statewide Health Planning and Development. We provide a comparison of our technique with three other existing outlier detection techniques, consisting of auto-encoders, isolation forests and feature bagging. We identified outliers in conditions including suicide rates, immunity disorders, social admissions, cardiomyopathies, and pregnancy in the third trimester. We demonstrate that the PIKS technique produces results consistent with other techniques such as the auto-encoder. However, the auto-encoder needs to be trained, which requires several parameters to be tuned. In comparison, the PIKS technique has far fewer parameters to tune. This makes it advantageous for fast, "out-of-the-box" data exploration. The PIKS technique is scalable and can readily ingest new datasets. Hence, it can provide valuable, up-to-date insights to citizens, patients and policy-makers. We have made our code open source, and with the availability of open data, other researchers can easily reproduce and extend our work. This will help promote a deeper understanding of healthcare policies and public health issues

    History, Features, Challenges, and Critical Success Factors of Enterprise Resource Planning (ERP) in The Era of Industry 4.0

    Get PDF
    ERP has been adopting newer features over the last several decades and shaping global businesses with the advent of newer technologies. This research article uses a state-of-the-art review method with the purpose to review and synthesize the latest information on the possible integration of potential Industry 4.0 technologies into the future development of ERP. Different software that contributed to the development of the existing ERP is found to be Material Requirement Planning (MRP), Manufacturing Resource Planning (MRPII), and Computer Integrated Manufacturing (CIM). Potential disruptive Industry 4.0 technologies that are featured to be integrated into future ERP are artificial intelligence, business intelligence, the internet of things, big data, blockchain technology, and omnichannel strategy. Notable Critical Success Factors of ERP have been reported to be top management support, project team, IT infrastructure, communication, skilled staff, training & education, and monitoring & evaluation. Moreover, cybersecurity has been found to be the most challenging issue to overcome in future versions of ERP. This review article could help future ERP researchers and respective stakeholders contribute to integrating newer features in future versions of ERP

    The Viability and Potential Consequences of IoT-Based Ransomware

    Get PDF
    With the increased threat of ransomware and the substantial growth of the Internet of Things (IoT) market, there is significant motivation for attackers to carry out IoT-based ransomware campaigns. In this thesis, the viability of such malware is tested. As part of this work, various techniques that could be used by ransomware developers to attack commercial IoT devices were explored. First, methods that attackers could use to communicate with the victim were examined, such that a ransom note was able to be reliably sent to a victim. Next, the viability of using "bricking" as a method of ransom was evaluated, such that devices could be remotely disabled unless the victim makes a payment to the attacker. Research was then performed to ascertain whether it was possible to remotely gain persistence on IoT devices, which would improve the efficacy of existing ransomware methods, and provide opportunities for more advanced ransomware to be created. Finally, after successfully identifying a number of persistence techniques, the viability of privacy-invasion based ransomware was analysed. For each assessed technique, proofs of concept were developed. A range of devices -- with various intended purposes, such as routers, cameras and phones -- were used to test the viability of these proofs of concept. To test communication hijacking, devices' "channels of communication" -- such as web services and embedded screens -- were identified, then hijacked to display custom ransom notes. During the analysis of bricking-based ransomware, a working proof of concept was created, which was then able to remotely brick five IoT devices. After analysing the storage design of an assortment of IoT devices, six different persistence techniques were identified, which were then successfully tested on four devices, such that malicious filesystem modifications would be retained after the device was rebooted. When researching privacy-invasion based ransomware, several methods were created to extract information from data sources that can be commonly found on IoT devices, such as nearby WiFi signals, images from cameras, or audio from microphones. These were successfully implemented in a test environment such that ransomable data could be extracted, processed, and stored for later use to blackmail the victim. Overall, IoT-based ransomware has not only been shown to be viable but also highly damaging to both IoT devices and their users. While the use of IoT-ransomware is still very uncommon "in the wild", the techniques demonstrated within this work highlight an urgent need to improve the security of IoT devices to avoid the risk of IoT-based ransomware causing havoc in our society. Finally, during the development of these proofs of concept, a number of potential countermeasures were identified, which can be used to limit the effectiveness of the attacking techniques discovered in this PhD research

    Critical Review on Internet of Things (IoT): Evolution and Components Perspectives

    Get PDF
    Technological advancement in recent years has transformed the internet to a network where everything is linked, and everyday objects can be recognised and controlled. This interconnection is popularly termed as the Internet of Things (IoT). Although, IoT remains popular in academic literature, limited studies have focused on its evolution, components, and implications for industries. Hence, the focus of this book chapter is to explore these dimensions, and their implications for industries. The study adopted the critical review method, to address these gaps in the IoT literature for service and manufacturing industries. Furthermore, the relevance for IoT for service and manufacturing industries were also discussed. While the impact of IoT in the next five years is expected to be high by industry practitioners, experts consider the current degree of its implementation across industry to be on the average. This critical review contributes theoretically to the literature on IoT. In effect, the intense implementation of the IoT, IIoT and IoS will go a long way in ensuring improvements in various industries that would in the long run positively impact the general livelihood of people as well as the way of doing things. Practical implications and suggestions for future studies have been discussed

    Redefining Community in the Age of the Internet: Will the Internet of Things (IoT) generate sustainable and equitable community development?

    Get PDF
    There is a problem so immense in our built world that it is often not fully realized. This problem is the disconnection between humanity and the physical world. In an era of limitless data and information at our fingertips, buildings, public spaces, and landscapes are divided from us due to their physical nature. Compared with the intense flow of information from our online world driven by the beating engine of the internet, our physical world is silent. This lack of connection not only has consequences for sustainability but also for how we perceive and communicate with our built environment in the modern age. A possible solution to bridge the gap between our physical and online worlds is a technology known as the Internet of Things (IoT). What is IoT? How does it work? Will IoT change the concept of the built environment for a participant within it, and in doing so enhance the dynamic link between humans and place? And what are the implications of IoT for privacy, security, and data for the public good? Lastly, we will identify the most pressing issues existing in the built environment by conducting and analyzing case studies from Pomona College and California State University, Northridge. By analyzing IoT in the context of case studies we can assess its viability and value as a tool for sustainability and equality in communities across the world

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    DIN Spec 91345 RAMI 4.0 compliant data pipelining: An approach to support data understanding and data acquisition in smart manufacturing environments

    Get PDF
    Today, data scientists in the manufacturing domain are confronted with a set of challenges associated to data acquisition as well as data processing including the extraction of valuable in-formation to support both, the work of the manufacturing equipment as well as the manufacturing processes behind it. One essential aspect related to data acquisition is the pipelining, including various commu-nication standards, protocols and technologies to save and transfer heterogenous data. These circumstances make it hard to understand, find, access and extract data from the sources depend-ing on use cases and applications. In order to support this data pipelining process, this thesis proposes the use of the semantic model. The selected semantic model should be able to describe smart manufacturing assets them-selves as well as to access their data along their life-cycle. As a matter of fact, there are many research contributions in smart manufacturing, which already came out with reference architectures or standards for semantic-based meta data descrip-tion or asset classification. This research builds upon these outcomes and introduces a novel se-mantic model-based data pipelining approach using as a basis the Reference Architecture Model for Industry 4.0 (RAMI 4.0).Hoje em dia, os cientistas de dados no domínio da manufatura são confrontados com várias normas, protocolos e tecnologias de comunicação para gravar, processar e transferir vários tipos de dados. Estas circunstâncias tornam difícil compreender, encontrar, aceder e extrair dados necessários para aplicações dependentes de casos de utilização, desde os equipamentos aos respectivos processos de manufatura. Um aspecto essencial poderia ser um processo de canalisação de dados incluindo vários normas de comunicação, protocolos e tecnologias para gravar e transferir dados. Uma solução para suporte deste processo, proposto por esta tese, é a aplicação de um modelo semântico que descreva os próprios recursos de manufactura inteligente e o acesso aos seus dados ao longo do seu ciclo de vida. Muitas das contribuições de investigação em manufatura inteligente já produziram arquitecturas de referência como a RAMI 4.0 ou normas para a descrição semântica de meta dados ou classificação de recursos. Esta investigação baseia-se nestas fontes externas e introduz um novo modelo semântico baseado no Modelo de Arquitectura de Referência para Indústria 4.0 (RAMI 4.0), em conformidade com a abordagem de canalisação de dados no domínio da produção inteligente como caso exemplar de utilização para permitir uma fácil exploração, compreensão, descoberta, selecção e extracção de dados

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    A Case Study Examining Japanese University Students' Digital Literacy and Perceptions of Digital Tools for Academic English learning

    Get PDF
    Current Japanese youth are constantly connected to the Internet and using digital devices, but predominantly for social media and entertainment. According to literature on the Japanese digital native, tertiary students do not—and cannot—use technology with any reasonable fluency, but the likely reasons are rarely addressed. To fill the gap in the literature, this study, by employing a case study methodology, explores students’ experience with technology for English learning through the introduction of digital tools. First-year Japanese university students in an Academic English Program (AEP) were introduced to a variety of easily available digital tools. The instruction was administered online, and each tool was accompanied by a task directly related to classwork. Both quantitative and qualitative data were collected in the form of a pre-course Computer Literacy Survey, a post-course open-ended Reflection Activity survey, and interviews. The qualitative data was reviewed drawing on the Technology Acceptance Model (TAM) and its educational variants as an analytical framework. Educational, social, and cultural factors were also examined to help identify underlying factors that would influence students’ perceptions. The results suggest that the subjects’ lack of awareness of, and experience with, the use of technology for learning are the fundamental causes of their perceptions of initial difficulty. Based on these findings, this study proposes a possible technology integration model that enhances digital literacy for more effective language learning in the context of Japanese education
    • …
    corecore