7,351 research outputs found

    A Survey on Traffic Signal Control Methods

    Full text link
    Traffic signal control is an important and challenging real-world problem, which aims to minimize the travel time of vehicles by coordinating their movements at the road intersections. Current traffic signal control systems in use still rely heavily on oversimplified information and rule-based methods, although we now have richer data, more computing power and advanced methods to drive the development of intelligent transportation. With the growing interest in intelligent transportation using machine learning methods like reinforcement learning, this survey covers the widely acknowledged transportation approaches and a comprehensive list of recent literature on reinforcement for traffic signal control. We hope this survey can foster interdisciplinary research on this important topic.Comment: 32 page

    Self-Organization in Traffic Lights: Evolution of Signal Control with Advances in Sensors and Communications

    Full text link
    Traffic signals are ubiquitous devices that first appeared in 1868. Recent advances in information and communications technology (ICT) have led to unprecedented improvements in such areas as mobile handheld devices (i.e., smartphones), the electric power industry (i.e., smart grids), transportation infrastructure, and vehicle area networks. Given the trend towards interconnectivity, it is only a matter of time before vehicles communicate with one another and with infrastructure. In fact, several pilots of such vehicle-to-vehicle and vehicle-to-infrastructure (e.g. traffic lights and parking spaces) communication systems are already operational. This survey of autonomous and self-organized traffic signaling control has been undertaken with these potential developments in mind. Our research results indicate that, while many sophisticated techniques have attempted to improve the scheduling of traffic signal control, either real-time sensing of traffic patterns or a priori knowledge of traffic flow is required to optimize traffic. Once this is achieved, communication between traffic signals will serve to vastly improve overall traffic efficiency

    Flow: A Modular Learning Framework for Autonomy in Traffic

    Full text link
    The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, due to numerous technical, political, and human factors challenges, new methodologies are needed to design vehicles and transportation systems for these positive outcomes. This article tackles technical challenges arising from the partial adoption of autonomy: partial control, partial observation, complex multi-vehicle interactions, and the sheer variety of traffic settings represented by real-world networks. The article presents a modular learning framework which leverages deep Reinforcement Learning methods to address complex traffic dynamics. Modules are composed to capture common traffic phenomena (traffic jams, lane changing, intersections). Learned control laws are found to exceed human driving performance by at least 40% with only 5-10% adoption of AVs. In partially-observed single-lane traffic, a small neural network control law can eliminate stop-and-go traffic -- surpassing all known model-based controllers, achieving near-optimal performance, and generalizing to out-of-distribution traffic densities.Comment: 14 pages, 8 figures; new experiments and analysi

    Distributed traffic light control at uncoupled intersections with real-world topology by deep reinforcement learning

    Full text link
    This work examines the implications of uncoupled intersections with local real-world topology and sensor setup on traffic light control approaches. Control approaches are evaluated with respect to: Traffic flow, fuel consumption and noise emission at intersections. The real-world road network of Friedrichshafen is depicted, preprocessed and the present traffic light controlled intersections are modeled with respect to state space and action space. Different strategies, containing fixed-time, gap-based and time-based control approaches as well as our deep reinforcement learning based control approach, are implemented and assessed. Our novel DRL approach allows for modeling the TLC action space, with respect to phase selection as well as selection of transition timings. It was found that real-world topologies, and thus irregularly arranged intersections have an influence on the performance of traffic light control approaches. This is even to be observed within the same intersection types (n-arm, m-phases). Moreover we could show, that these influences can be efficiently dealt with by our deep reinforcement learning based control approach.Comment: 32nd Conference on Neural Information Processing Systems, within Workshop on Machine Learning for Intelligent Transportation System

    Intelligent Traffic Light Control Using Distributed Multi-agent Q Learning

    Full text link
    The combination of Artificial Intelligence (AI) and Internet-of-Things (IoT), which is denoted as AI-powered Internet-of-Things (AIoT), is capable of processing huge amount of data generated from a large number of devices and handling complex problems in social infrastructures. As AI and IoT technologies are becoming mature, in this paper, we propose to apply AIoT technologies for traffic light control, which is an essential component for intelligent transportation system, to improve the efficiency of smart city's road system. Specifically, various sensors such as surveillance cameras provide real-time information for intelligent traffic light control system to observe the states of both motorized traffic and non-motorized traffic. In this paper, we propose an intelligent traffic light control solution by using distributed multi-agent Q learning, considering the traffic information at the neighboring intersections as well as local motorized and non-motorized traffic, to improve the overall performance of the entire control system. By using the proposed multi-agent Q learning algorithm, our solution is targeting to optimize both the motorized and non-motorized traffic. In addition, we considered many constraints/rules for traffic light control in the real world, and integrate these constraints in the learning algorithm, which can facilitate the proposed solution to be deployed in real operational scenarios. We conducted numerical simulations for a real-world map with real-world traffic data. The simulation results show that our proposed solution outperforms existing solutions in terms of vehicle and pedestrian queue lengths, waiting time at intersections, and many other key performance metrics

    Diagnosing Reinforcement Learning for Traffic Signal Control

    Full text link
    With the increasing availability of traffic data and advance of deep reinforcement learning techniques, there is an emerging trend of employing reinforcement learning (RL) for traffic signal control. A key question for applying RL to traffic signal control is how to define the reward and state. The ultimate objective in traffic signal control is to minimize the travel time, which is difficult to reach directly. Hence, existing studies often define reward as an ad-hoc weighted linear combination of several traffic measures. However, there is no guarantee that the travel time will be optimized with the reward. In addition, recent RL approaches use more complicated state (e.g., image) in order to describe the full traffic situation. However, none of the existing studies has discussed whether such a complex state representation is necessary. This extra complexity may lead to significantly slower learning process but may not necessarily bring significant performance gain. In this paper, we propose to re-examine the RL approaches through the lens of classic transportation theory. We ask the following questions: (1) How should we design the reward so that one can guarantee to minimize the travel time? (2) How to design a state representation which is concise yet sufficient to obtain the optimal solution? Our proposed method LIT is theoretically supported by the classic traffic signal control methods in transportation field. LIT has a very simple state and reward design, thus can serve as a building block for future RL approaches to traffic signal control. Extensive experiments on both synthetic and real datasets show that our method significantly outperforms the state-of-the-art traffic signal control methods

    Learning Phase Competition for Traffic Signal Control

    Full text link
    Increasingly available city data and advanced learning techniques have empowered people to improve the efficiency of our city functions. Among them, improving the urban transportation efficiency is one of the most prominent topics. Recent studies have proposed to use reinforcement learning (RL) for traffic signal control. Different from traditional transportation approaches which rely heavily on prior knowledge, RL can learn directly from the feedback. On the other side, without a careful model design, existing RL methods typically take a long time to converge and the learned models may not be able to adapt to new scenarios. For example, a model that is trained well for morning traffic may not work for the afternoon traffic because the traffic flow could be reversed, resulting in a very different state representation. In this paper, we propose a novel design called FRAP, which is based on the intuitive principle of phase competition in traffic signal control: when two traffic signals conflict, priority should be given to one with larger traffic movement (i.e., higher demand). Through the phase competition modeling, our model achieves invariance to symmetrical cases such as flipping and rotation in traffic flow. By conducting comprehensive experiments, we demonstrate that our model finds better solutions than existing RL methods in the complicated all-phase selection problem, converges much faster during training, and achieves superior generalizability for different road structures and traffic conditions

    Multi-Agent Deep Reinforcement Learning for Large-scale Traffic Signal Control

    Full text link
    Reinforcement learning (RL) is a promising data-driven approach for adaptive traffic signal control (ATSC) in complex urban traffic networks, and deep neural networks further enhance its learning power. However, centralized RL is infeasible for large-scale ATSC due to the extremely high dimension of the joint action space. Multi-agent RL (MARL) overcomes the scalability issue by distributing the global control to each local RL agent, but it introduces new challenges: now the environment becomes partially observable from the viewpoint of each local agent due to limited communication among agents. Most existing studies in MARL focus on designing efficient communication and coordination among traditional Q-learning agents. This paper presents, for the first time, a fully scalable and decentralized MARL algorithm for the state-of-the-art deep RL agent: advantage actor critic (A2C), within the context of ATSC. In particular, two methods are proposed to stabilize the learning procedure, by improving the observability and reducing the learning difficulty of each local agent. The proposed multi-agent A2C is compared against independent A2C and independent Q-learning algorithms, in both a large synthetic traffic grid and a large real-world traffic network of Monaco city, under simulated peak-hour traffic dynamics. Results demonstrate its optimality, robustness, and sample efficiency over other state-of-the-art decentralized MARL algorithms

    Optimal Control Theory in Intelligent Transportation Systems Research - A Review

    Full text link
    Continuous motorization and urbanization around the globe leads to an expansion of population in major cities. Therefore, ever-growing pressure imposed on the existing mass transit systems calls for a better technology, Intelligent Transportation Systems (ITS), to solve many new and demanding management issues. Many studies in the extant ITS literature attempted to address these issues within which various research methodologies were adopted. However, there is very few paper summarized what does optimal control theory (OCT), one of the sharpest tools to tackle management issues in engineering, do in solving these issues. It{\textquoteright}s both important and interesting to answer the following two questions. (1) How does OCT contribute to ITS research objectives? (2) What are the research gaps and possible future research directions? We searched 11 top transportation and control journals and reviewed 41 research articles in ITS area in which OCT was used as the main research methodology. We categorized the articles by four different ways to address our research questions. We can conclude from the review that OCT is widely used to address various aspects of management issues in ITS within which a large portion of the studies aimed to reduce traffic congestion. We also critically discussed these studies and pointed out some possible future research directions towards which OCT can be used

    Internet of Smart-Cameras for Traffic Lights Optimization in Smart Cities

    Full text link
    Smart and decentralized control systems have recently been proposed to handle the growing traffic congestion in urban cities. Proposed smart traffic light solutions based on Wireless Sensor Network and Vehicular Ad-hoc NETwork are either unreliable and inflexible or complex and costly. Furthermore, the handling of special vehicles such as emergency is still not viable, especially during busy hours. Inspired by the emergence of distributed smart cameras, we present a novel approach to traffic control at intersections. Our approach uses smart cameras at intersections along with image understanding for real-time traffic monitoring and assessment. Besides understanding the traffic flow, the cameras can detect and track special vehicles and help prioritize emergency cases. Traffic violations can be identified as well and traffic statistics collected. In this paper, we introduce a flexible, adaptive and distributed control algorithm that uses the information provided by distributed smart cameras to efficiently control traffic signals. Experimental results show that our collision-free approach outperforms the state-of-the-art of the average user's waiting time in the queue and improves the routing of emergency vehicles in a cross congestion area.Comment: 12 page
    corecore