2 research outputs found

    TRIPILLAR: Miniature magnetic caterpillar climbing robot with plane transition ability

    Get PDF
    In this paper, we describe a miniature climbing robot, 96 x 46 x 64 [mm3], able to climb ferromagnetic surfaces and to make inner plane to plane transition using only two degrees of freedom. Our robot, named TRIPILLAR, combines magnetic caterpillars and magnets to climb planar ferromagnetic surfaces. Two triangular tracks are mounted in a differential drive mode, which allows squid steering and on spot turning. Exploiting the particular geometry and magnetic properties of this arrangement, TRIPILLAR is able to transit between intersecting surfaces. The intersection angle ranges from -10° to 90° on the pitch angle of the coordinate system of the robot regardless of the orientation of gravity. A possible path is to move from ground to ceiling and back. This achievement opens new avenues for mobile robotics inspection of ferromagnetic industrial structure with stringent size restriction, like the one encountered in power plants

    TRIPILLAR: Miniature magnetic caterpillar climbing robot with plane transition ability

    Get PDF
    We present a miniature magnetic climbing robot with dimensions 96 x 46 x 64mm(3). With two degrees of freedom it is able to climb ferromagnetic surfaces and to make inner plane to plane transitions whatever their inclination is. This robot, named TRIPILLAR, combines triangular-shaped magnetic caterpillars and frame magnets. This particular configuration allows, for example, to move from ground to wall and ceiling and back. This achievement opens new avenues to use mobile robotics for industrial inspection with stringent size restrictions, such as the ones encountered in power plants.(1
    corecore