2,822 research outputs found

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Patient monitoring under an ambient intelligence setting

    Get PDF
    Springer - Series Advances in Intelligent and Soft Computing, vol. 72In recent years there has been a growing interest in developing Ambient Intelligence based systems in order to create smart environments for user and environmental monitoring. In fact, higher-level monitoring systems with vital information about the user and the environment around him/her represents an improvement of the quality of care provided. In this paper, we propose an architecture that implements a multi-agent user-profile based system for patient monitoring aimed to improve the assistance and health care provided. This system mixes logical based reasoning mechanisms with context-aware technologies. It is also presented a case based on a scenario developed at a major Portuguese healthcare institution

    Managing ubiquitous eco cities: the role of urban telecommunication infrastructure networks and convergence technologies

    Get PDF
    A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Decision Support and Systems Interoperability in Global Business Management

    Get PDF
    Globalization of business and volatility of financial markets has catapulted ‘cycle-time’ as a key indicator of operational efficiency in business processes. Systems automation holds the promise to augment the ability of business and healthcare networks to rapidly adapt to changes or respond, with minimal human intervention, under ideal conditions. Currently, system of systems (SOS) or organization of networks contribute minimally in making decisions because collaboration remains elusive due the challenges of complexity. Convergence and maturity of research offers the potential for a paradigm shift in interoperability. This paper explores some of these trends and related technologies. Irrespective of the characteristics of information systems, the development of various industry-contributed ontologies for knowledge and decision layers, may spur self-organizing SOS to increase the ability to sense and respond. Profitability from pervasive use of ontological frameworks and agent-based modeling may depend on the ability to use them through better enterprise and extraprise exchange

    Ubiquitous computing and ambient intelligence: New challenges for computing

    Full text link
    The IST Advisory Group (ISTAG) of the European Union had a vision of "Ambient Intelligence" (AmI) in 1999. It refers to "an exciting new paradigm of information technology, in which people are empowered through a digital environment that is aware of their presence and context sensitive, adaptive and responsive to their needs, habits, gestures and emotions". In AmI the technology will become invisible, embedded, present whenever we need it, enabled by simple interactions, attuned to all our senses and adaptive to users and contexts (Scenarios for Ambient Intelligence). AmI proposes a shift in computing from the traditional computer to a whole set of devices placed around us providing users with an intelligent background
    corecore