16 research outputs found

    Semi-autonomous robotic wheelchair controlled with low throughput human- machine interfaces

    Get PDF
    For a wide range of people with limited upper- and lower-body mobility, interaction with robots remains a challenging problem. Due to various health conditions, they are often unable to use standard joystick interface, most of wheelchairs are equipped with. To accommodate this audience, a number of alternative human-machine interfaces have been designed, such as single switch, sip-and-puff, brain-computer interfaces. They are known as low throughput interfaces referring to the amount of information that an operator can pass into the machine. Using them to control a wheelchair poses a number of challenges. This thesis makes several contributions towards the design of robotic wheelchairs controlled via low throughput human-machine interfaces: (1) To improve wheelchair motion control, an adaptive controller with online parameter estimation is developed for a differentially driven wheelchair. (2) Steering control scheme is designed that provides a unified framework integrating different types of low throughput human-machine interfaces with an obstacle avoidance mechanism. (3) A novel approach to the design of control systems with low throughput human-machine interfaces has been proposed. Based on the approach, position control scheme for a holonomic robot that aims to probabilistically minimize time to destination is developed and tested in simulation. The scheme is adopted for a real differentially driven wheelchair. In contrast to other methods, the proposed scheme allows to use prior information about the user habits, but does not restrict navigation to a set of pre-defined points, and parallelizes the inference and motion reducing the navigation time. (4) To enable the real time operation of the position control, a high-performance algorithm for single-source any-angle path planning on a grid has been developed. By abandoning the graph model and introducing discrete geometric primitives to represent the propagating wave front, we were able to design a planning algorithm that uses only integer addition and bit shifting. Experiments revealed a significant performance advantage. Several modifications, including optimal and multithreaded implementations, are also presented

    Scheduling Tasks on Intermittently-Powered Real-Time Systems

    Get PDF
    Batteryless systems go through sporadic power on and off phases due to intermittently available energy; thus, they are called intermittent systems. Unfortunately, this intermittence in power supply hinders the timely execution of tasks and limits such devices’ potential in certain application domains, e.g., healthcare, live-stock tracking. Unlike prior work on time-aware intermittent systems that focuses on timekeeping [1, 2, 3] and discarding expired data [4], this dissertation concentrates on finishing task execution on time. I leverage the data processing and control layer of batteryless systems by developing frameworks that (1) integrate energy harvesting and real-time systems, (2) rethink machine learning algorithms for an energy-aware imprecise task scheduling framework, (3) develop scheduling algorithms that, along with deciding what to compute, answers when to compute and when to harvest, and (4) utilize distributed systems that collaboratively emulate a persistently powered system. Scheduling Framework for Intermittently Powered Computing Systems. Batteryless systems rely on sporadically available harvestable energy. For example, kinetic-powered motion detector sensors on the impalas can only harvest energy when the impalas are moving, which cannot be ascertained in advance. This uncertainty poses a unique real-time scheduling problem where existing real-time algorithms fail due to the interruption in execution time. This dissertation proposes a unified scheduling framework that includes both harvesting and computing. Imprecise Deep Neural Network Inference in Deadline-Aware Intermittent Systems. This dissertation proposes Zygarde- an energy-aware and outcome-aware soft-real-time imprecise deep neural network (DNN) task scheduling framework for intermittent systems. Zygarde leverages the semantic diversity of input data and layer-dependent expressiveness of deep features and infers only the necessary DNN layers based on available time and energy. Zygarde proposes a novel technique to determine the imprecise boundary at the runtime by exploiting the clustering classifiers and specialized offline training of the DNNs to minimize the loss of accuracy due to partial execution. It also proposes a single metric, η to represent a system’s predictability that measures how close a harvesterâs harvesting pattern is to a constant energy source. Besides, Zygarde consists of a scheduling algorithm that takes available time, available energy, impreciseness, and the classifier's performance into account. Scheduling Mutually Exclusive Computing and Harvesting Tasks in Deadline-Aware Intermittent Systems. The lack of sufficient ambient energy to directly power the intermittent systems introduces mutually exclusive computing and charging cycles of intermittently powered systems. This introduces a challenging real-time scheduling problem where the existing real-time algorithms fail due to the lack of interruption in execution time. To address this, this dissertation proposes Celebi, which considers the dynamics of the available energy and schedules when to harvest and when to compute in batteryless systems. Using data-driven simulation and real-world experiments, this dissertation shows that Celebi significantly increases the number of tasks that complete execution before their deadline when power was only available intermittently. Persistent System Emulation with Distributed Intermittent System. Intermittently-powered sensing and computing systems go through sporadic power-on and off periods due to the uncertain availability of energy sources. Despite the recent efforts to advance time-sensitive intermittent systems, such systems fail to capture important target events when the energy is absent for a prolonged time. This event miss limits the potential usage of intermittent systems in fault- intolerant and safety-critical applications. To address this problem, this dissertation proposes Falinks, a framework that allows a swarm of distributed intermittently powered nodes to collaboratively imitate the sensing and computing capabilities of a persistently powered system. This framework provides power-on and off schedules for the swamp of intermittent nodes which has no communication capability with each other.Doctor of Philosoph

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Resource-aware plan recognition in instrumented environments

    Get PDF
    This thesis addresses the problem of plan recognition in instrumented environments, which is to infer an agent';s plans by observing its behavior. In instrumented environments such observations are made by physical sensors. This introduces specific challenges, of which the following two are considered in this thesis: - Physical sensors often observe state information instead of actions. As classical plan recognition approaches usually can only deal with action observations, this requires a cumbersome and error-prone inference of executed actions from observed states. - Due to limited physical resources of the environment it is often not possible to run all sensors at the same time, thus sensor selection techniques have to be applied. Current plan recognition approaches are not able to support the environment in selecting relevant subsets of sensors. This thesis proposes a two-stage approach to solve the problems described above. Firstly, a DBN-based plan recognition approach is presented which allows for the explicit representation and consideration of state knowledge. Secondly, a POMDP-based utility model for observation sources is presented which can be used with generic utility-based sensor selection algorithms. Further contributions include the presentation of a software toolkit that realizes plan recognition and sensor selection in instrumented environments, and an empirical evaluation of the validity and performance of the proposed models.Diese Arbeit behandelt das Problem der Planerkennung in instrumentierten Umgebungen. Ziel ist dabei das Erschließen der Pläne des Nutzers anhand der Beobachtung seiner Handlungen. In instrumentierten Umgebungen erfolgt diese Beobachtung über physische Sensoren. Dies wirft spezifische Probleme auf, von denen zwei in dieser Arbeit näher betrachtet werden: - Physische Sensoren beobachten in der Regel Zustände anstelle direkter Nutzeraktionen. Klassische Planerkennungsverfahren basieren jedoch auf der Beobachtung von Aktionen, was bisher eine aufwendige und fehlerträchtige Ableitung von Aktionen aus Zustandsbeobachtungen notwendig macht. - Aufgrund beschränkter Resourcen der Umgebung ist es oft nicht möglich alle Sensoren gleichzeitig zu aktivieren. Aktuelle Planerkennungsverfahren bieten keine Möglichkeit, die Umgebung bei der Auswahl einer relevanten Teilmenge von Sensoren zu unterstützen. Diese Arbeit beschreibt einen zweistufigen Ansatz zur Lösung der genannten Probleme. Zunächst wird ein DBN-basiertes Planerkennungsverfahren vorgestellt, das Zustandswissen explizit repräsentiert und in Schlussfolgerungen berücksichtigt. Dieses Verfahren bildet die Basis für ein POMDP-basiertes Nutzenmodell für Beobachtungsquellen, das für den Zweck der Sensorauswahl genutzt werden kann. Des Weiteren wird ein Toolkit zur Realisierung von Planerkennungs- und Sensorauswahlfunktionen vorgestellt sowie die Gültigkeit und Performanz der vorgestellten Modelle in einer empirischen Studie evaluiert

    Resource management in sensing services with audio applications

    Get PDF
    Middleware abstractions, or services, that can bridge the gap between the increasingly pervasive sensors and the sophisticated inference applications exist, but they lack the necessary resource-awareness to support high data-rate sensing modalities such as audio/video. This work therefore investigates the resource management problem in sensing services, with application in audio sensing. First, a modular, data-centric architecture is proposed as the framework within which optimal resource management is studied. Next, the guided-processing principle is proposed to achieve optimized trade-off between resource (energy) and (inference) performance. On cascade-based systems, empirical results show that the proposed approach significantly improves the detection performance (up to 1.7x and 4x reduction in false-alarm and miss rate, respectively) for the same energy consumption, when compared to the duty-cycling approach. Furthermore, the guided-processing approach is also generalizable to graph-based systems. Resource-efficiency in the multiple-application setting is achieved through the feature-sharing principle. Once applied, the method results in a system that can achieve 9x resource saving and 1.43x improvement in detection performance in an example application. Based on the encouraging results above, a prototype audio sensing service is built for demonstration. An interference-robust audio classification technique with limited training data would prove valuable within the service, so a novel algorithm with the desired properties is proposed. The technique combines AI-gram time-frequency representation and multidimensional dynamic time warping, and it outperforms the state-of-the-art using the prominent-region-based approach across a wide range of (synthetic, both stationary and transient) interference types and signal-to-interference ratios, and also on field recordings (with areas under the receiver operating characteristic and precision-recall curves being 91% and 87%, respectively)

    Towards structured neural spoken dialogue modelling.

    Get PDF
    195 p.In this thesis, we try to alleviate some of the weaknesses of the current approaches to dialogue modelling,one of the most challenging areas of Artificial Intelligence. We target three different types of dialogues(open-domain, task-oriented and coaching sessions), and use mainly machine learning algorithms to traindialogue models. One challenge of open-domain chatbots is their lack of response variety, which can betackled using Generative Adversarial Networks (GANs). We present two methodological contributions inthis regard. On the one hand, we develop a method to circumvent the non-differentiability of textprocessingGANs. On the other hand, we extend the conventional task of discriminators, which oftenoperate at a single response level, to the batch level. Meanwhile, two crucial aspects of task-orientedsystems are their understanding capabilities because they need to correctly interpret what the user islooking for and their constraints), and the dialogue strategy. We propose a simple yet powerful way toimprove spoken understanding and adapt the dialogue strategy by explicitly processing the user's speechsignal through audio-processing transformer neural networks. Finally, coaching dialogues shareproperties of open-domain and task-oriented dialogues. They are somehow task-oriented but, there is norush to complete the task, and it is more important to calmly converse to make the users aware of theirown problems. In this context, we describe our collaboration in the EMPATHIC project, where a VirtualCoach capable of carrying out coaching dialogues about nutrition was built, using a modular SpokenDialogue System. Second, we model such dialogues with an end-to-end system based on TransferLearning

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Channel assembling policies for heterogeneous fifth generation (5G) cognitive radio networks.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file
    corecore