2 research outputs found

    Integration of real-time planning and control in an unstructured manufacturing workcell

    No full text
    In this paper, we consider the problem of real-time planning and control of a robot manipulator in an unstructured workspace. The task we consider is to control the manipulator, such that the end-effector follows a path on an unknown surface, with the aid of a single camera assumed to be uncalibrated with respect to the robot coordinates. To accomplish a task of this kind, we propose a new control strategy based on multisensor fusion. We assume that three different sensors, i.e. encoders mounted at each joint of the robot with 6 d.o.f., a force-torque sensor mounted at the wrist of the manipulator and a visual sensor with a single camera fixed to the ceiling of the workcell, are available. Also, we assume that the contact point between the tool grasped by the end-effector and the surface is frictionless. To describe the proposed algorithm that we have implemented, first of all we decouple the vector space of control variables into two subspaces, and use one of the subspaces for controlling the magnitude of the contact force on the surface and the other subspace for controlling the constrained motion on the surface. In this way the control synthesis problem is decoupled and we are able to develop a new scheme that utilizes sensor fusion to handle uncalibrated parameters in the workcell and wherein the surface on which the task is to be performed is assumed to be visible, but has an apriori unknown position.Link_to_subscribed_fulltex
    corecore