1,512,872 research outputs found

    Viscoelasticity and shear flow of concentrated, non-crystallizing colloidal suspensions: Comparison with Mode-Coupling Theory

    Full text link
    We present a comprehensive rheological study of a suspension of thermosensitive particles dispersed in water. The volume fraction of these particles can be adjusted by the temperature of the system in a continuous fashion. Due to the finite polydispersity of the particles (standard deviation: 17%), crystallization is suppressed and no fluid-crystal transition intervenes. Hence, the moduli G′G' and G"G" in the linear viscoelastic regime as well as the flow curves (shear stress σ(γ˙)\sigma(\dot{\gamma}) as the function of the shear rate γ˙\dot{\gamma}) could be measured in the fluid region up to the vicinity of the glass transition. Moreover, flow curves could be obtained over a range of shear rates of 8 orders of magnitude while G′G' and G"G" could be measured spanning over 9 orders of magnitude. Special emphasis has been laid on precise measurements down to the smallest shear rates/frequencies. It is demonstrated that mode-coupling theory generalized in the integration through transients framework provides a full description of the flow curves as well as the viscoelastic behavior of concentrated suspensions with a single set of well-defined parameters

    Two-Qubit Separability Probabilities and Beta Functions

    Get PDF
    Due to recent important work of Zyczkowski and Sommers (quant-ph/0302197 and quant-ph/0304041), exact formulas are available (both in terms of the Hilbert-Schmidt and Bures metrics) for the (n^2-1)-dimensional and (n(n-1)/2-1)-dimensional volumes of the complex and real n x n density matrices. However, no comparable formulas are available for the volumes (and, hence, probabilities) of various separable subsets of them. We seek to clarify this situation for the Hilbert-Schmidt metric for the simplest possible case of n=4, that is, the two-qubit systems. Making use of the density matrix (rho) parameterization of Bloore (J. Phys. A 9, 2059 [1976]), we are able to reduce each of the real and complex volume problems to the calculation of a one-dimensional integral, the single relevant variable being a certain ratio of diagonal entries, nu = (rho_{11} rho_{44})/{rho_{22} rho_{33})$. The associated integrand in each case is the product of a known (highly oscillatory near nu=1) jacobian and a certain unknown univariate function, which our extensive numerical (quasi-Monte Carlo) computations indicate is very closely proportional to an (incomplete) beta function B_{nu}(a,b), with a=1/2, b=sqrt{3}in the real case, and a=2 sqrt{6}/5, b =3/sqrt{2} in the complex case. Assuming the full applicability of these specific incomplete beta functions, we undertake separable volume calculations.Comment: 17 pages, 4 figures, paper is substantially rewritten and reorganized, with the quasi-Monte Carlo integration sample size being greatly increase
    • …
    corecore