58,798 research outputs found

    Addressing challenges to teach traditional and agile project management in academia

    Full text link
    In order to prepare students for a professional IT career, most universities attempt to provide a current educational curriculum in the Project Management (PM) area to their students. This is usually based on the most promising methodologies used by the software industry. As instructors, we need to balance traditional methodologies focused on proven project planning and control processes leveraging widely accepted methods and tools along with the newer agile methodologies. Such new frameworks emphasize that software delivery should be done in a flexible and iterative manner and with significant collaboration with product owners and customers. In our experience agile methodologies have witnessed an exponential growth in many diverse software organizations, and the various agile PM tools and techniques will continue to see an increase in adoption in the software development sector. Reflecting on these changes, there is a critical need to accommodate best practices and current methodologies in our courses that deliver Project Management content. In this paper we analyse two of the most widely used methodologies for traditional and agile software development – the widely used ISO/PMBOK standard provided by the Project Management Institute and the well-accepted Scrum framework. We discuss how to overcome curriculum challenges and deliver a quality undergraduate PM course for a Computer Science and Information systems curricula. Based on our teaching experience in Europe and North America, we present a comprehensive comparison of the two approaches. Our research covers the main concepts, processes, and roles associated with the two PM frameworks and recommended learning outcomes. The paper should be of value to instructors who are keen to see their computing students graduate with a sound understanding of current PM methodologies and who can deliver real-world software products.Accepted manuscrip

    Emerging cad and bim trends in the aec education: An analysis from students\u27 perspective

    Get PDF
    As the construction industry is moving towards collaborative design and construction practices globally, training the architecture, engineering, and construction (AEC) students professionally related to CAD and BIM became a necessity rather than an option. The advancement in the industry has led to collaborative modelling environments, such as building information modelling (BIM), as an alternative to computer-aided design (CAD) drafting. Educators have shown interest in integrating BIM into the AEC curriculum, where teaching CAD and BIM simultaneously became a challenge due to the differences of two systems. One of the major challenges was to find the appropriate teaching techniques, as educators were unaware of the AEC students’ learning path in CAD and BIM. In order to make sure students learn and benefit from both CAD and BIM, the learning path should be revealed from students’ perspective. This paper summarizes the background and differences of CAD and BIM education, and how the transition from CAD to BIM can be achieved for collaborative working practices. The analysis was performed on freshman and junior level courses to learn the perception of students about CAD and BIM education. A dual-track survey was used to collect responses from AEC students in four consecutive years. The results showed that students prefer BIM to CAD in terms of the friendliness of the user-interface, help functions, and self-detection of mistakes. The survey also revealed that most of the students believed in the need for a BIM specialty course with Construction Management (CM), Structure, and Mechanical-Electrical-Plumbing (MEP) areas. The benefits and challenges of both CAD and BIM-based software from students’ perspectives helps to improve the learning outcomes of CAD/BIM courses to better help students in their learning process, and works as a guideline for educators on how to design and teach CAD/BIM courses simultaneously by considering the learning process and perspectives of students. © 2018 The autho

    Educating the educators: Incorporating bioinformatics into biological science education in Malaysia

    Get PDF
    Bioinformatics can be defined as a fusion of computational and biological sciences. The urgency to process and analyse the deluge of data created by proteomics and genomics studies has caused bioinformatics to gain prominence and importance. However, its multidisciplinary nature has created a unique demand for specialist trained in both biology and computing. In this review, we described the components that constitute the bioinformatics field and distinctive education criteria that are required to produce individuals with bioinformatics training. This paper will also provide an introduction and overview of bioinformatics in Malaysia. The existing bioinformatics scenario in Malaysia was surveyed to gauge its advancement and to plan for future bioinformatics education strategies. For comparison, we surveyed methods and strategies used in education by other countries so that lessons can be learnt to further improve the implementation of bioinformatics in Malaysia. It is believed that accurate and sufficient steerage from the academia and industry will enable Malaysia to produce quality bioinformaticians in the future

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    BIMing the architectural curricula: integrating Building Information Modelling (BIM) in architectural education

    Get PDF
    Building Information Modelling (BIM) reflects the current heightened transformation within the Architectural, Engineering and Construction (AEC) Industry and the Facilities and Management (FM) sector, offering a host of benefits from increased efficiency, accuracy, speed, co-ordination, consistency, energy analysis, project cost reduction etc to various stake holders from owners to architects, engineers, contractors and other built environment professionals. Many countries around the world are responding to this paradigm shift including the United Kingdom (UK). The Cabinet office took the decision in 2011 to make the use of collaborative 3D BIM technology mandatory for all public sector construction contracts by 2016 (Cabinet Office, 2011). According to Smith and Tardif, despite certain myths and misconceptions surrounding BIM, its rate of implementation has been much faster in comparison to the availability of professionals skilled in use of BIM, thus creating a skill gap in the design and construction industry (Smith and Tardif, cited in Barison and Santos, 2010a). This article aims at bridging the gap between the graduate skill sets and the changing needs of the profession. The research methodology adopted consists of thoroughly reviewing the existing literature in this subject area coupled with carrying out a survey of accredited Schools of Architecture in the UK. The analysis of the survey questionnaire results shows the extent to which BIM is currently being taught and identifies the barriers where its implementation has either been slow or not yet started. The paper highlights the fact that there has been considerable delay in the successful integration of BIM in the Schools of Architecture in the UK, thus emphasising the need for expeditiously training and preparing students in the use of BIM making them ready to effectively perform in a BIM enabled work arena

    The Blended Learning Unit, University of Hertfordshire: A Centre for Excellence in Teaching and Learning, Evaluation Report for HEFCE

    Get PDF
    The University of Hertfordshire’s Blended Learning Unit (BLU) was one of the 74 Centres for Excellence in Teaching and Learning (CETLs) funded by the Higher Education Funding Council for England (HEFCE) between 2005 and 2010. This evaluation report follows HEFCE’s template. The first section provides statistical information about the BLU’s activity. The second section is an evaluative reflection responding to 13 questions. As well as articulating some of our achievements and the challenges we have faced, it also sets out how the BLU’s activity will continue and make a significant contribution to delivery of the University of Hertfordshire’s 2010-2015 strategic plan and its aspirations for a more sustainable future. At the University of Hertfordshire, we view Blended Learning as the use of Information and Communication Technology (ICT) to enhance the learning and learning experience of campus-based students. The University has an excellent learning technology infrastructure that includes its VLE, StudyNet. StudyNet gives students access to a range of tools, resources and support 24/7 from anywhere in the world and its robustness, flexibility and ease of use have been fundamental to the success of the Blended Learning agenda at Hertfordshire. The BLU has comprised a management team, expert teachers seconded from around the University, professional support and a Student Consultant. The secondment staffing model was essential to the success of the BLU. As well as enabling the BLU to become fully staffed within the first five months of the CETL initiative, it has facilitated access to an invaluable spectrum of Blended Learning, research and Change Management expertise to inform pedagogically sound developments and enable change to be embedded across the institution. The BLU used much of its capital funding to reduce barriers to the use of technology by, for example, providing laptop computers for all academic staff in the institution, enhancing classroom technology provision and wirelessly enabling all teaching accommodation. Its recurrent funding has supported development opportunities for its own staff and staff around the institution; supported evaluation activities relating to individual projects and of the BLU’s own impact; and supported a wide range of communication and dissemination activities internally and externally. The BLU has led the embedding a cultural change in relation to Blended Learning at the University of Hertfordshire and its impact will be sustained. The BLU has produced a rich legacy of resources for our own staff and for others in the sector. The University’s increased capacity in Blended Learning benefits all our students and provides a learning experience that is expected by the new generation of learners in the 21st century. The BLU’s staffing model and partnership ways of working have directly informed the structure and modus operandi of the University’s Learning and Teaching Institute (LTI). Indeed a BLU team will continue to operate within the LTI and help drive and support the implementation of the University’s 2010-2015 Strategic plan. The plan includes ambitions in relation to Distance Learning and Flexible learning and BLU will be working to enable greater engagement with students with less or no need to travel to the university. As well as opening new markets within the UK and overseas, even greater flexibility for students will also enable the University to reduce its carbon footprint and provide a multifaceted contribution to our sustainability agenda. We conclude this executive summary with a short paragraph, written by Eeva Leinonen, our former Deputy Vice-Chancellor, which reflects our aspiration to transform Learning and Teaching at the University of Hertfordshire and more widely in the sector. ‘As Deputy Vice Chancellor at Hertfordshire I had the privilege to experience closely the excellent work of the Blended Learning Unit, and was very proud of the enormous impact the CETL had not only across the University but also nationally and internationally. However, perhaps true impact is hard to judge at such close range, but now as Vice Principal (Education) at King's College London, I can unequivocally say that Hertfordshire is indeed considered as the leading Blended Learning university in the sector. My new colleagues at King's and other Russell Group Universities frequently seek my views on the 'Hertfordshire Blended Learning' experience and are keen to emulate the successes achieved at an institutional wide scale. The Hertfordshire CETL undoubtedly achieved not only what it set out to achieve, but much more in terms of scale and impact. All those involved in this success can be justifiably proud of their achievements.’ Professor Eeva Leinonen, Vice Principal (Education), King's College, Londo

    Contemporary developments in teaching and learning introductory programming: Towards a research proposal

    Get PDF
    The teaching and learning of introductory programming in tertiary institutions is problematic. Failure rates are high and the inability of students to complete small programming tasks at the completion of introductory units is not unusual. The literature on teaching programming contains many examples of changes in teaching strategies and curricula that have been implemented in an effort to reduce failure rates. This paper analyses contemporary research into the area, and summarises developments in the teaching of introductory programming. It also focuses on areas for future research which will potentially lead to improvements in both the teaching and learning of introductory programming. A graphical representation of the issues from the literature that are covered in the document is provided in the introduction
    • 

    corecore