8,155 research outputs found

    Integrating simplified inverse representation and CRC for face recognition

    Full text link
    © Springer International Publishing Switzerland 2015. The representation based classification method (RBCM) has attracted much attention in the last decade. RBCM exploits the linear combination of training samples to represent the test sample, which is then classified according to the minimum reconstruction residual. Recently, an interesting concept, Inverse Representation (IR), is proposed. It is the inverse process of conventional RBCMs. IR applies test samples’ information to represent each training sample, and then classifies the training sample as a useful supplement for the final classification. The relative algorithm CIRLRC, integrating IR and linear regression classification (LRC) by score fusing, shows superior classification performance. However, there are two main drawbacks in CIRLRC. First, the IR in CIRLRC is not pure, because the test vector contains some training sample information. The other is the computation inefficiency because CIRLRC should solve C linear equations for classifying the test sample respectively, where C is the number of the classes. Therefore, we present a novel method integrating simplified IR (SIR) and collaborative representation classification (CRC), named SIRCRC, for face recognition. In SIRCRC, only test sample information is fully used in SIR, and CRC is more efficient than LRC in terms of speed, thus, one linear equation system is needed. Extensive experimental results on face databases show that it is very competitive with both CIRLRC and the state-of-the-art RBCM

    Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations

    Full text link
    Thin film processing by means of sputter deposition inherently depends on the interaction of energetic particles with a target surface and the subsequent particle transport. The length and time scales of the underlying physical phenomena span orders of magnitudes. A theoretical description which bridges all time and length scales is not practically possible. Advantage can be taken particularly from the well-separated time scales of the fundamental surface and plasma processes. Initially, surface properties may be calculated from a surface model and stored for a number of representative cases. Subsequently, the surface data may be provided to gas-phase transport simulations via appropriate model interfaces (e.g., analytic expressions or look-up tables) and utilized to define insertion boundary conditions. During run-time evaluation, however, the maintained surface data may prove to be not sufficient. In this case, missing data may be obtained by interpolation (common), extrapolation (inaccurate), or be supplied on-demand by the surface model (computationally inefficient). In this work, a potential alternative is established based on machine learning techniques using artificial neural networks. As a proof of concept, a multilayer perceptron network is trained and verified with sputtered particle distributions obtained from transport of ions in matter based simulations for Ar projectiles bombarding a Ti-Al composite. It is demonstrated that the trained network is able to predict the sputtered particle distributions for unknown, arbitrarily shaped incident ion energy distributions. It is consequently argued that the trained network may be readily used as a machine learning based model interface (e.g., by quasi-continuously sampling the desired sputtered particle distributions from the network), which is sufficiently accurate also in scenarios which have not been previously trained

    Adaptive Locality Preserving Regression

    Full text link
    This paper proposes a novel discriminative regression method, called adaptive locality preserving regression (ALPR) for classification. In particular, ALPR aims to learn a more flexible and discriminative projection that not only preserves the intrinsic structure of data, but also possesses the properties of feature selection and interpretability. To this end, we introduce a target learning technique to adaptively learn a more discriminative and flexible target matrix rather than the pre-defined strict zero-one label matrix for regression. Then a locality preserving constraint regularized by the adaptive learned weights is further introduced to guide the projection learning, which is beneficial to learn a more discriminative projection and avoid overfitting. Moreover, we replace the conventional `Frobenius norm' with the special l21 norm to constrain the projection, which enables the method to adaptively select the most important features from the original high-dimensional data for feature extraction. In this way, the negative influence of the redundant features and noises residing in the original data can be greatly eliminated. Besides, the proposed method has good interpretability for features owing to the row-sparsity property of the l21 norm. Extensive experiments conducted on the synthetic database with manifold structure and many real-world databases prove the effectiveness of the proposed method.Comment: The paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), and the code can be available at https://drive.google.com/file/d/1iNzONkRByIaUhXwdEhOkkh_0d2AAXNE8/vie
    • …
    corecore