4 research outputs found

    Managing deadline miss ratio and sensor data freshness in real-time databases

    Full text link

    CEEME: compensating events based execution monitoring enforcement for Cyber-Physical Systems

    Get PDF
    Fundamentally, inherently observable events in Cyber-Physical Systems with tight coupling between cyber and physical components can result in a confidentiality violation. By observing how the physical elements react to cyber commands, adversaries can identify critical links in the system and force the cyber control algorithm to make erroneous decisions. Thus, there is a propensity for a breach in confidentiality leading to further attacks on availability or integrity. Due to the highly integrated nature of Cyber-Physical Systems, it is also extremely difficult to map the system semantics into a security framework under existing security models. The far-reaching objective of this research is to develop a science of selfobfuscating systems based on the composition of simple building blocks. A model of Nondeducibility composes the building blocks under Information Flow Security Properties. To this end, this work presents fundamental theories on external observability for basic regular networks and the novel concept of event compensation that can enforce Information Flow Security Properties at runtime --Abstract, page iii

    Integrating Security and Real-Time Requirements Using Covert Channel Capacity

    No full text
    Database systems for real-time applications must satisfy timing constraints associated with transactions in addition to maintaining data consistency. In addition to real-time requirements, security is usually required in many applications. Multilevel security requirements introduce a new dimension to transaction processing in real-time database systems. In this paper, we argue that, due to the conflicting goals of each requirement, trade-offs need to be made between security and timeliness. We first define mutual information, a measure of the degree to which security is being satisfied by a system. A secure two-phase locking protocol is then described and a scheme is proposed to allow partial violations of security for improved timeliness. Analytical expressions for the mutual information of the resultant covert channel are derived and a feedback control scheme is proposed that does not allow the mutual information to exceed a specified upper bound. Results showing the efficacy of the scheme obtained through simulation experiments are also discussed

    Integrating security and real-time requirements using covert channel capacity

    No full text
    corecore