14,056 research outputs found

    Excitations and the tangent space of projected entangled-pair states

    Full text link
    We develop tangent space methods for projected entangled-pair states (PEPS) that provide direct access to the low-energy sector of strongly-correlated two-dimensional quantum systems. More specifically, we construct a variational ansatz for elementary excitations on top of PEPS ground states that allows for computing gaps, dispersion relations, and spectral weights directly in the thermodynamic limit. Solving the corresponding variational problem requires the evaluation of momentum transformed two-point and three-point correlation functions on a PEPS background, which we can compute efficiently by using a contraction scheme. As an application we study the spectral properties of the magnons of the Affleck-Kennedy-Lieb-Tasaki model on the square lattice and the anyonic excitations in a perturbed version of Kitaev's toric code

    A Simulation Model for Logical and Operative Clash Detection

    Get PDF
    The introduction of the Building Information Modeling (BIM) approach has facilitated the management process of documents produced by different kinds of professionals involved in the design and/or renovation of a building, through identification and subsequent management of geometrical interferences (Clash Detection). The methodology of this research proposes a tool to support Clash Detection, introducing the logical-operative dimension, that may occur with the presence of a construction site within a hospital structure, through the integration of a BIM model within a Game Engine environment, to preserve the continuity of daily hospital activities and trying to reduce negative impacts, times and costs due to construction activities

    Quantum theory of dispersive electromagnetic modes

    Get PDF
    A quantum theory of dispersion for an inhomogeneous solid is obtained, from a starting point of multipolar coupled atoms interacting with an electromagnetic field. The dispersion relations obtained are equivalent to the standard classical Sellmeir equations obtained from the Drude-Lorentz model. In the homogeneous (plane-wave) case, we obtain the detailed quantum mode structure of the coupled polariton fields, and show that the mode expansion in all branches of the dispersion relation is completely defined by the refractive index and the group-velocity for the polaritons. We demonstrate a straightforward procedure for exactly diagonalizing the Hamiltonian in one, two or three-dimensional environments, even in the presence of longitudinal phonon-exciton dispersion, and an arbitrary number of resonant transitions with different frequencies. This is essential, since it is necessary to include at least one phonon (I.R.) and one exciton (U.V.) mode, in order to accurately represent dispersion in transparent solid media. Our method of diagonalization does not require an explicit solution of the dispersion relation, but relies instead on the analytic properties of Cauchy contour integrals over all possible mode frequencies. When there is longitudinal phonon dispersion, the relevant group-velocity term is modified so that it only includes the purely electromagnetic part of the group velocity

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen

    Dynamical flows through Dark Matter Haloes II: one and two points statistics at the virial radius

    Get PDF
    In a serie of three papers, the dynamical interplay between environments and dark matter haloes is investigated, while focussing on the dynamical flows through their virial sphere. Our method relies on both cosmological simulations, to constrain the environments, and an extension to the classical matrix method to derive the response of the halo (see Pichon & Aubert (2006), paper I). The current paper focuses on the statistical characterisation of the environments surrounding haloes, using a set of large scale simulations. Our description relies on a `fluid' halocentric representation where the interactions between the halo and its environment are investigated in terms of a time dependent external tidal field and a source term characterizing the infall. The method is applied to 15000 haloes, with masses between 5 x 10^12 Ms and 10^14 Ms evolving between z = 1 and z = 0. The net accretion at the virial radius is found to decrease with time, resulting from both an absolute decrease of infall and from a growing contribution of outflows. Infall is found to be mainly radial and occurring at velocities ~ 0.75 V200. Outflows are also detected through the virial sphere and occur at lower velocities ~ 0.6 V200 on more circular orbits. The external tidal field is found to be strongly quadrupolar and mostly stationnary, possibly reflecting the distribution of matter in the halo's near environment. The coherence time of the small scale fluctuations of the potential hints a possible anisotropic distribution of accreted satellites. The flux density of mass on the virial sphere appears to be more clustered than the potential while the shape of its angular power spectrum seems stationnary.Comment: 34 pages, 29 figures, accepted for publication in MNRA

    Strong field QED in lepton colliders and electron/laser interactions

    Get PDF
    Studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. The main theoretical framework considered is the Furry picture. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated non perturbatively, involving exact solutions for quantised charged particles in the background field. These "dressed" particles go on to interact perturbatively with other particles. The background field starts to polarise the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field QED Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle, resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.Comment: Review article, 56 pages, 29 figures. Version 2 has corrected errata, 1 new reference, 5 updated figure

    Leveraging legacy codes to distributed problem solving environments: A web service approach

    Get PDF
    This paper describes techniques used to leverage high performance legacy codes as CORBA components to a distributed problem solving environment. It first briefly introduces the software architecture adopted by the environment. Then it presents a CORBA oriented wrapper generator (COWG) which can be used to automatically wrap high performance legacy codes as CORBA components. Two legacy codes have been wrapped with COWG. One is an MPI-based molecular dynamic simulation (MDS) code, the other is a finite element based computational fluid dynamics (CFD) code for simulating incompressible Navier-Stokes flows. Performance comparisons between runs of the MDS CORBA component and the original MDS legacy code on a cluster of workstations and on a parallel computer are also presented. Wrapped as CORBA components, these legacy codes can be reused in a distributed computing environment. The first case shows that high performance can be maintained with the wrapped MDS component. The second case shows that a Web user can submit a task to the wrapped CFD component through a Web page without knowing the exact implementation of the component. In this way, a user’s desktop computing environment can be extended to a high performance computing environment using a cluster of workstations or a parallel computer

    Interactive Design Using CFD and Virtual Engineering

    Get PDF
    Virtual engineering is a powerful concept, defined as a technology that integrates geometric models and related engineering tools such as analysis and simulation, optimization and decision-making tools, etc. within a computer generated environment that facilitates multidisciplinary and collaborative product realization [1]. Virtual engineering applications can be constructed from scratch with high-level programming languages. However, since the end-user of the virtual engineering application is most likely not a programming expert, high-level support is needed to provide the user with the capability to construct his own application in an intuitive manner and with minimal coding. In this paper, we present a framework of the virtual engineering environment and its implementation, identify the general requirements for a virtual engineering application, and summarize the architecture. A virtual engineering application on computational fluid dynamics (CFD)-based interactive design is used to motivate the research as well as to evaluate the performance of the system. The sample application is related to the coal transport system of a coal-fired power plant. Finally, the topics for future research are given
    corecore