7 research outputs found

    Integrating GA-based Time-scale Feature Extractions with SVMs for Stock Index Forecasting

    No full text
    [[abstract]]By integrating genetic algorithm (GA)-based optimal time-scale feature extractions with support vector machines (SVM), this study develops a novel hybrid prediction model that operates for multiple time-scale resolutions and utilizes a flexible nonparametric regressor to predict future evolutions of various stock indices. The time series of explanatory variables are decomposed using wavelet bases, and a GA is employed to extract optimal time-scale feature subsets from decomposed features. These extracted time-scale feature subsets then serve as an input for an SVM model that performs final forecasting. Compared with neural networks, pure SVMs or traditional GARCH models, the proposed model performs best. The root-mean-squared forecasting errors are significantly reduced

    Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models

    Get PDF
    Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly developed family of econometric models that deal with these concepts by benefiting from both LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and LSTAR models have significant architectural similarities. Accordingly, linear GARCH, fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated asymmetric power APGARCH models are augmented with a family of Neural Network models. The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-MLP. Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and asymmetric power versions provided improvements among the GARCH family models in terms of forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models. iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-LST-APGARCH-MLP model provided the best performance overall

    Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models

    Get PDF
    Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly developed family of econometric models that deal with these concepts by benefiting from both LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and LSTAR models have significant architectural similarities. Accordingly, linear GARCH, fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated asymmetric power APGARCH models are augmented with a family of Neural Network models. The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-MLP. Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and asymmetric power versions provided improvements among the GARCH family models in terms of forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models. iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-LST-APGARCH-MLP model provided the best performance overall

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments
    corecore