3 research outputs found

    Strong Equivalence of Logic Programs with Abstract Constraint Atoms

    Get PDF
    Abstract. Logic programs with abstract constraint atoms provide a unifying framework for studying logic programs with various kinds of constraints. Establishing strong equivalence between logic programs is a key property for program maintenance and optimization, and for guaranteeing the same behavior for a revised original program in any context. In this paper, we study strong equivalence of logic programs with abstract constraint atoms. We first give a general characterization of strong equivalence based on a new definition of program reduct for logic programs with abstract constraints. Then we consider a particular kind of program revision-constraint replacements addressing the question: under what conditions can a constraint in a program be replaced by other constraints, so that the resulting program is strongly equivalent to the original one

    Arithmetic and Modularity in Declarative Languages for Knowledge Representation

    Get PDF
    The past decade has witnessed the development of many important declarative languages for knowledge representation and reasoning such as answer set programming (ASP) languages and languages that extend first-order logic. Also, since these languages depend on background solvers, the recent advancements in the efficiency of solvers has positively affected the usability of such languages. This thesis studies extensions of knowledge representation (KR) languages with arithmetical operators and methods to combine different KR languages. With respect to arithmetic in declarative KR languages, we show that existing KR languages suffer from a huge disparity between their expressiveness and their computational power. Therefore, we develop an ideal KR language that captures the complexity class NP for arithmetical search problems and guarantees universality and efficiency for solving such problems. Moreover, we introduce a framework to language-independently combine modules from different KR languages. We study complexity and expressiveness of our framework and develop algorithms to solve modular systems. We define two semantics for modular systems based on (1) a model-theoretical view and (2) an operational view on modular systems. We prove that our two semantics coincide and also develop mechanisms to approximate answers to modular systems using the operational view. We augment our algorithm these approximation mechanisms to speed up the process of solving modular system. We further generalize our modular framework with supported model semantics that disallows self-justifying models. We show that supported model semantics generalizes our two previous model-theoretical and operational semantics. We compare and contrast the expressiveness of our framework under supported model semantics with another framework for interlinking knowledge bases, i.e., multi-context systems, and prove that supported model semantics generalizes and unifies different semantics of multi-context systems. Motivated by the wide expressiveness of supported models, we also define a new supported equilibrium semantics for multi-context systems and show that supported equilibrium semantics generalizes previous semantics for multi-context systems. Furthermore, we also define supported semantics for propositional programs and show that supported model semnatics generalizes the acclaimed stable model semantics and extends the two celebrated properties of rationality and minimality of intended models beyond the scope of logic programs
    corecore