3 research outputs found

    Integrated Optimization of Power Split, Engine Thermal Management, and Cabin Heating for Hybrid Electric Vehicles

    Full text link
    Cabin heating demand and engine efficiency degradation in cold weather lead to considerable increase in fuel consumption of hybrid electric vehicles (HEVs), especially in congested traffic conditions. This paper presents an integrated power and thermal management (i-PTM) scheme for the optimization of power split, engine thermal management, and cabin heating of HEVs. A control-oriented model of a power split HEV, including power and thermal loops, is developed and experimentally validated against data collected from a 2017 Toyota Prius HEV. Based on this model, the dynamic programming (DP) technique is adopted to derive a bench-mark for minimal fuel consumption, using 2-dimensional (power split and engine thermal management) and 3-dimensional (power split, engine thermal management, and cabin heating) formulations. Simulation results for a real-world congested driving cycle show that the engine thermal effect and the cabin heating requirement can significantly influence the optimal behavior for the power management, and substantial potential on fuel saving can be achieved by the i-PTM optimization as compared to conventional power and thermal management strategies.Comment: 6 pages, 10 figures, 2 tables, The 3rd IEEE Conference on Control Technology and Applications (CCTA, August 19--21, 2019, Hong Kong, Chin

    Thermal Responses of Connected HEVs Engine and Aftertreatment Systems to Eco-Driving

    Full text link
    Connected and automated vehicles (CAVs) have been recognized as providing unprecedented opportunities for substantial fuel economy improvement through CAV-based vehicle speed trajectory optimization (eco-driving). At the same time, the implications of the CAV operation on thermal responses, including those of engine and exhaust aftertreatment system, have not been fully investigated. To this end, firstly, a sequential optimization framework for vehicle speed trajectory planning and powertrain control in hybrid electric CAVs is proposed in this paper. Next, the impact of eco-driving and power split optimization on the engine and catalytic converter thermal responses, as well as on the tailpipe emissions is characterized. Despite an average 16% improvement in fuel economy through sequential optimization, this study shows that eco-driving slows down the thermal responses, which could unfavorably affect the tailpipe emissions.Comment: 6 pages, 7 figures, The 3rd IEEE Conference on Control Technology and Applications (CCTA), August 19--21, 2019, Hong Kong, Chin

    Integrated Power and Thermal Management of Connected HEVs via Multi-Horizon MPC

    Full text link
    In this paper, a multi-horizon model predictive controller (MH-MPC) is developed for integrated power and thermal management (iPTM) of a power-split hybrid electric vehicle (HEV). The proposed MH-MPC leverages an accurate short-horizon vehicle speed preview and an approximate forecast over a longer shrinking horizon till the end of the driving cycle. This multiple-horizon scheme is developed to cope with fast and slow dynamics associated with power and thermal responses. The main objective of the proposed MH-MPC is to minimize fuel consumption and enforce the power and thermal constraints on the battery state-of-charge and engine coolant temperature, while meeting the driving (traction) and cabin air conditioning (heating) demands. The proposed MH-MPC allows for exploiting the engine coolant as thermal energy storage, providing more flexibility for the HEV energy flow optimization. The simulation results show that the proposed MH-MPC provides near-optimal results in reference to the Dynamic Programming (DP) solution with an affordable computational cost. Moreover, compared with a more conventional MPC strategy, the MH-MPC can leverage the speed previews with different resolutions effectively to achieve the desired performance with satisfactory robustness.Comment: 8 Figures, Accepted in 2020 American Control Conference (ACC), July 1 to 3, 2020, Denver, CO, US
    corecore