54,660 research outputs found

    Securing the Participation of Safety-Critical SCADA Systems in the Industrial Internet of Things

    Get PDF
    In the past, industrial control systems were ‘air gapped’ and isolated from more conventional networks. They used specialist protocols, such as Modbus, that are very different from TCP/IP. Individual devices used proprietary operating systems rather than the more familiar Linux or Windows. However, things are changing. There is a move for greater connectivity – for instance so that higher-level enterprise management systems can exchange information that helps optimise production processes. At the same time, industrial systems have been influenced by concepts from the Internet of Things; where the information derived from sensors and actuators in domestic and industrial components can be addressed through network interfaces. This paper identifies a range of cyber security and safety concerns that arise from these developments. The closing sections introduce potential solutions and identify areas for future research

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Applying Lessons from Cyber Attacks on Ukrainian Infrastructures to Secure Gateways onto the Industrial Internet of Things

    Get PDF
    Previous generations of safety-related industrial control systems were ‘air gapped’. In other words, process control components including Programmable Logic Controllers (PLCs) and smart sensor/actuators were disconnected and isolated from local or wide area networks. This provided a degree of protection; attackers needed physical access to compromise control systems components. Over time this ‘air gap’ has gradually been eroded. Switches and gateways have subsequently interfaced industrial protocols, including Profibus and Modbus, so that data can be drawn from safety-related Operational Technology into enterprise information systems using TCP/IP. Senior management uses these links to monitor production processes and inform strategic planning. The Industrial Internet of Things represents another step in this evolution – enabling the coordination of physically distributed resources from a centralized location. The growing range and sophistication of these interconnections create additional security concerns for the operation and management of safety-critical systems. This paper uses lessons learned from recent attacks on Ukrainian critical infrastructures to guide a forensic analysis of an IIoT switch. The intention is to identify and mitigate vulnerabilities that would enable similar attacks to be replicated across Europe and North America

    Anonymizing cybersecurity data in critical infrastructures: the CIPSEC approach

    Get PDF
    Cybersecurity logs are permanently generated by network devices to describe security incidents. With modern computing technology, such logs can be exploited to counter threats in real time or before they gain a foothold. To improve these capabilities, logs are usually shared with external entities. However, since cybersecurity logs might contain sensitive data, serious privacy concerns arise, even more when critical infrastructures (CI), handling strategic data, are involved. We propose a tool to protect privacy by anonymizing sensitive data included in cybersecurity logs. We implement anonymization mechanisms grouped through the definition of a privacy policy. We adapt said approach to the context of the EU project CIPSEC that builds a unified security framework to orchestrate security products, thus offering better protection to a group of CIs. Since this framework collects and processes security-related data from multiple devices of CIs, our work is devoted to protecting privacy by integrating our anonymization approach.Peer ReviewedPostprint (published version

    Why We Cannot (Yet) Ensure the Cybersecurity of Safety-Critical Systems

    Get PDF
    There is a growing threat to the cyber-security of safety-critical systems. The introduction of Commercial Off The Shelf (COTS) software, including Linux, specialist VOIP applications and Satellite Based Augmentation Systems across the aviation, maritime, rail and power-generation infrastructures has created common, vulnerabilities. In consequence, more people now possess the technical skills required to identify and exploit vulnerabilities in safety-critical systems. Arguably for the first time there is the potential for cross-modal attacks leading to future ‘cyber storms’. This situation is compounded by the failure of public-private partnerships to establish the cyber-security of safety critical applications. The fiscal crisis has prevented governments from attracting and retaining competent regulators at the intersection of safety and cyber-security. In particular, we argue that superficial similarities between safety and security have led to security policies that cannot be implemented in safety-critical systems. Existing office-based security standards, such as the ISO27k series, cannot easily be integrated with standards such as IEC61508 or ISO26262. Hybrid standards such as IEC 62443 lack credible validation. There is an urgent need to move beyond high-level policies and address the more detailed engineering challenges that threaten the cyber-security of safety-critical systems. In particular, we consider the ways in which cyber-security concerns undermine traditional forms of safety engineering, for example by invalidating conventional forms of risk assessment. We also summarise the ways in which safety concerns frustrate the deployment of conventional mechanisms for cyber-security, including intrusion detection systems

    Cyber security situational awareness

    Get PDF

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management
    • 

    corecore