6,324 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Developing a comprehensive framework for multimodal feature extraction

    Full text link
    Feature extraction is a critical component of many applied data science workflows. In recent years, rapid advances in artificial intelligence and machine learning have led to an explosion of feature extraction tools and services that allow data scientists to cheaply and effectively annotate their data along a vast array of dimensions---ranging from detecting faces in images to analyzing the sentiment expressed in coherent text. Unfortunately, the proliferation of powerful feature extraction services has been mirrored by a corresponding expansion in the number of distinct interfaces to feature extraction services. In a world where nearly every new service has its own API, documentation, and/or client library, data scientists who need to combine diverse features obtained from multiple sources are often forced to write and maintain ever more elaborate feature extraction pipelines. To address this challenge, we introduce a new open-source framework for comprehensive multimodal feature extraction. Pliers is an open-source Python package that supports standardized annotation of diverse data types (video, images, audio, and text), and is expressly with both ease-of-use and extensibility in mind. Users can apply a wide range of pre-existing feature extraction tools to their data in just a few lines of Python code, and can also easily add their own custom extractors by writing modular classes. A graph-based API enables rapid development of complex feature extraction pipelines that output results in a single, standardized format. We describe the package's architecture, detail its major advantages over previous feature extraction toolboxes, and use a sample application to a large functional MRI dataset to illustrate how pliers can significantly reduce the time and effort required to construct sophisticated feature extraction workflows while increasing code clarity and maintainability
    • …
    corecore