2,477 research outputs found

    Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles

    Get PDF
    A leader-follower formation driving algorithm developed for control of heterogeneous groups of unmanned micro aerial and ground vehicles stabilized under a top-view relative localization is presented in this paper. The core of the proposed method lies in a novel avoidance function, in which the entire 3D formation is represented by a convex hull projected along a desired path to be followed by the group. Such a representation of the formation provides non-collision trajectories of the robots and respects requirements of the direct visibility between the team members in environment with static as well as dynamic obstacles, which is crucial for the top-view localization. The algorithm is suited for utilization of a simple yet stable visual based navigation of the group (referred to as GeNav), which together with the on-board relative localization enables deployment of large teams of micro-scale robots in environments without any available global localization system. We formulate a novel Model Predictive Control (MPC) based concept that enables to respond to the changing environment and that provides a robust solution with team members' failure tolerance included. The performance of the proposed method is verified by numerical and hardware experiments inspired by reconnaissance and surveillance missions

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Autonomous Close Formation Flight of Small UAVs Using Vision-Based Localization

    Get PDF
    As Unmanned Aerial Vehicles (UAVs) are integrated into the national airspace to comply with the 2012 Federal Aviation Administration Reauthorization Act, new civilian uses for robotic aircraft will come about in addition to the more obvious military applications. One particular area of interest for UAV development is the autonomous cooperative control of multiple UAVs. In this thesis, a decentralized leader-follower control strategy is designed, implemented, and tested from the follower’s perspective using vision-based localization. The tasks of localization and control were carried out with separate processing hardware dedicated to each task. First, software was written to estimate the relative state of a lead UAV in real-time from video captured by a camera on-board the following UAV. The software, written using OpenCV computer vision libraries and executed on an embedded single-board computer, uses the Efficient Perspective-n-Point algorithm to compute the 3-D pose from a set of 2-D image points. High-intensity, red, light emitting diodes (LEDs) were affixed to specific locations on the lead aircraft’s airframe to simplify the task if extracting the 2-D image points from video. Next, the following vehicle was controlled by modifying a commercially available, open source, waypoint-guided autopilot to navigate using the relative state vector provided by the vision software. A custom Hardware-In-Loop (HIL) simulation station was set up and used to derive the required localization update rate for various flight patterns and levels of atmospheric turbulence. HIL simulation showed that it should be possible to maintain formation, with a vehicle separation of 50 ± 6 feet and localization estimates updated at 10 Hz, for a range of flight conditions. Finally, the system was implemented into low-cost remote controlled aircraft and flight tested to demonstrate formation convergence to 65.5 ± 15 feet of separation

    Integrated Relative-Measurement-Based Network Localization and Formation Maneuver Control (Extended Version)

    Full text link
    This paper studies the problem of integrated distributed network localization and formation maneuver control. We develop an integrated relative-measurement-based scheme, which only uses relative positions, distances, bearings, angles, ratio-of-distances, or their combination to achieve distributed network localization and formation maneuver control in Rd(d2)\mathbb{R}^d (d \ge 2). By exploring the localizability and invariance of the target formation, the scale, rotation, and translation of the formation can be controlled simultaneously by only tuning the leaders' positions, i.e., the followers do not need to know parameters of the scale, rotation, and translation of the target formation. The proposed method can globally drive the formation errors to zero in finite time over multi-layer d ⁣+ ⁣1d\!+\!1-rooted graphs. A simulation example is given to illustrate the theoretical results.Comment: 12 pages; 7 figures, title corrected, DOI adde

    Implementation of UAV Coordination Based on a Hierarchical Multi-UAV Simulation Platform

    Full text link
    In this paper, a hierarchical multi-UAV simulation platform,called XTDrone, is designed for UAV swarms, which is completely open-source 4 . There are six layers in XTDrone: communication, simulator,low-level control, high-level control, coordination, and human interac-tion layers. XTDrone has three advantages. Firstly, the simulation speedcan be adjusted to match the computer performance, based on the lock-step mode. Thus, the simulations can be conducted on a work stationor on a personal laptop, for different purposes. Secondly, a simplifiedsimulator is also developed which enables quick algorithm designing sothat the approximated behavior of UAV swarms can be observed inadvance. Thirdly, XTDrone is based on ROS, Gazebo, and PX4, andhence the codes in simulations can be easily transplanted to embeddedsystems. Note that XTDrone can support various types of multi-UAVmissions, and we provide two important demos in this paper: one is aground-station-based multi-UAV cooperative search, and the other is adistributed UAV formation flight, including consensus-based formationcontrol, task assignment, and obstacle avoidance.Comment: 12 pages, 10 figures. And for the, see https://gitee.com/robin_shaun/XTDron

    System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization

    Get PDF
    A complex system for control of swarms of micro aerial vehicles (MAV), in literature also called as unmanned aerial vehicles (UAV) or unmanned aerial systems (UAS), stabilized via an onboard visual relative localization is described in this paper. The main purpose of this work is to verify the possibility of self-stabilization of multi-MAV groups without an external global positioning system. This approach enables the deployment of MAV swarms outside laboratory conditions, and it may be considered an enabling technique for utilizing fleets of MAVs in real-world scenarios. The proposed visual-based stabilization approach has been designed for numerous different multi-UAV robotic applications (leader-follower UAV formation stabilization, UAV swarm stabilization and deployment in surveillance scenarios, cooperative UAV sensory measurement) in this paper. Deployment of the system in real-world scenarios truthfully verifies its operational constraints, given by limited onboard sensing suites and processing capabilities. The performance of the presented approach (MAV control, motion planning, MAV stabilization, and trajectory planning) in multi-MAV applications has been validated by experimental results in indoor as well as in challenging outdoor environments (e.g., in windy conditions and in a former pit mine)
    corecore