2,383,641 research outputs found

    Applications of Integrated Magnetic Microtraps

    Get PDF
    Lithographically fabricated circuit patterns can provide magnetic guides and microtraps for cold neutral atoms. By combining several such structures on the same ceramic substrate, we have realized the first ``atom chips'' that permit complex manipulations of ultracold trapped atoms or de Broglie wavepackets. We show how to design magnetic potentials from simple conductor patterns and we describe an efficient trap loading procedure in detail. Applying the design guide, we describe some new microtrap potentials, including a trap which reaches the Lamb-Dicke regime for rubidium atoms in all three dimensions, and a rotatable Ioffe-Pritchard trap, which we also demonstrate experimentally. Finally, we demonstrate a device allowing independent linear positioning of two atomic clouds which are very tightly confined laterally. This device is well suited for the study of one-dimensional collisions.Comment: 10 pages, 17 figure

    Opportunities for optics in integrated circuits applications

    Get PDF
    Optics potentially addresses two key problems in electronic chips and systems: interconnects and timing. Short optical pulses (e.g., picoseconds or shorter) offer particularly precise timing. Results are shown for optical and electrical four-phase clocking, with <1 ps rms jitter for the optical case

    Ultrafast laser inscription: perspectives on future integrated applications

    Get PDF
    This paper reviews the recent advancements achieved using ultrafast laser inscription (ULI) that highlight the cross-disciplinary potential of the technology. An overview of waveguide fabrication is provided and the three distinct types of waveguide cross-section architectures that have so far been fabricated in transparent dielectric materials are discussed. The paper focuses on two key emergent technologies driven by ULI processes. First, the recently developed photonic devices, such as compact mode-locked waveguide sources and novel mid-infrared waveguide lasers are discussed. Secondly, the phenomenon and applications of selective etching in developing ultrafast laser inscribed structures for compact lab-on-chip devices are elaborated. The review further discusses the conceivable future of ULI in impacting the aforementioned fields.</p

    Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics

    Full text link
    Integrated optical isolators have been a longstanding challenge for photonic integrated circuits (PIC). An ideal integrated optical isolator for PIC should be made by a monolithic process, have a small footprint, exhibit broadband and polarization-diverse operation, and be compatible with multiple materials platforms. Despite significant progress, the optical isolators reported so far do not meet all these requirements. In this article we present monolithically integrated broadband magneto-optical isolators on silicon and silicon nitride (SiN) platforms operating for both TE and TM modes with record high performances, fulfilling all the essential characteristics for PIC applications. In particular, we demonstrate fully-TE broadband isolators by depositing high quality magneto-optical garnet thin films on the sidewalls of Si and SiN waveguides, a critical result for applications in TE-polarized on-chip lasers and amplifiers. This work demonstrates monolithic integration of high performance optical isolators on chip for polarization-diverse silicon photonic systems, enabling new pathways to impart nonreciprocal photonic functionality to a variety of integrated photonic devices

    Integrated analysis and applications

    Get PDF
    A select overview is provided of ongoing research focusing on the development and verification of integrated structural analysis and optimal design capabilities for advanced aerospace propulsion and power systems. Subjects discussed include the following: (1) Composites - analytical models (composite mechanics), integrated computational methods, and characterization of composite structural response and durability for resin-, metal-, and ceramic-matrix systems; (2) Advanced inelastic analysis - algorithm/numerical methods for more accurate and efficient analysis; (3) Constitutive modeling - theoretical formulation and characterization of thermoviscoplastic material behavior; (4) Computational simulation - engine structures from components to assembly, and up to an entire engine system subjected to simulated test-stand and mission load histories; (5) Probabilistic structural analysis - quantification of the effects of uncertainty in geometry, material, loads, and boundary conditions on structural response for true reliability assessment; and (6) Interdisciplinary optimization - incorporation of mathematical optimization and multidisciplinary analyses to provide streamlined, autonomous optimal design systems

    A multi-INT semantic reasoning framework for intelligence analysis support

    Get PDF
    Lockheed Martin Corp. has funded research to generate a framework and methodology for developing semantic reasoning applications to support the discipline oflntelligence Analysis. This chapter outlines that framework, discusses how it may be used to advance the information sharing and integrated analytic needs of the Intelligence Community, and suggests a system I software architecture for such applications

    Design of fibre reinforced PV concepts for building integrated applications

    Get PDF
    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a broad range of the solar spectrum while the material properties and integral production processes create possibilities for novel product concepts with embedded PV technology. To explore such possibilities, innovative design methods were used to design novel PV product concepts for applications in the build environment.\ud In our paper three conceptual designs are presented; (1) a thin film module with an adjoining interconnection system functioning as structural element for geodetic roofing structures, (2) a PV lamella with single-axis tracking utilizing a linear concentration effect caused by the geometry of the product and the materials applied, and (3) a prepreg PV-material which allows for easy shaping during the production of PV modules with complex geometries. Each concept employs a specific PV technology and demonstrates a possible application aimed at a specific market. In this way we show the potential of integration of PV technology in fibre reinforced composites. The paper will be illustrated by concept renderings

    Detector arrays for low-background space infrared astronomy

    Get PDF
    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications
    corecore