5 research outputs found

    Integral trees of diameter 4

    Full text link
    An integral tree is a tree whose adjacency matrix has only integer eigenvalues. While most previous work by other authors has been focused either on the very restricted case of balanced trees or on finding trees with diameter as large as possible, we study integral trees of diameter 4. In particular, we characterize all diameter 4 integral trees of the form T(m1, t1) T(m2, t2). In addition we give elegant parametric descriptions of infinite families of integral trees of the form T(m1, t1) · · · T(mn, tn) for any n > 1. We conjecture that we have found all such trees

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Integral trees of diameter 6

    Get PDF
    A graph GG is called integral if all eigenvalues of its adjacency matrix A(G)A(G) are integers. In this paper, the trees T(p,q)⋅T(r,m,t)T(p,q)\cdot T(r,m,t) and K1,s⋅T(p,q)⋅T(r,m,t)K_{1,s}\cdot T(p,q)\cdot T(r,m,t) of diameter 6 are defined. We determine their characteristic polynomials. We also obtain for the first time sufficient and conditions for them to be integral. To do so, we use number theory and apply a computer search. New families of integral trees of diameter 6 are presented. Some of these classes are infinite. They are different from those in the existing literature. We also prove that the problem of finding integral trees of diameter 6 is equivalent to the problem of solving some Diophantine equations. We give a positive answer to a question of Wang et al. [Families of integral trees with diameters 4, 6 and 8, Discrete Appl. Math. 136 (2004) 349–362]. \ud \ud \u

    Small integral trees

    Get PDF
    We give a table with all integral trees on at most 50 vertices, and characterize integral trees with a single eigenvalue 0. 1 Integral trees A finite graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. A tree is a connected undirected graph without cycles. In this note we give a table with all integral trees on at most 50 vertices, and a further table with all known integral trees on at most 100 vertices. (For an on-line version, possibly with updates, see [1].) In particular, we find the smallest integral trees of diameter 6, and the smallest known integral tree of diameter 8. The nicest result about integral trees is that by Watanabe [12] that says that an integral tree different from K2 does not have a complete matching. Here we give a generalization
    corecore