595,500 research outputs found

    Integral Geometry and Holography

    Full text link
    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3_3/CFT2_2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3_3 whose kinematic space is two-dimensional de Sitter space.Comment: 23 pages + appendices, including 23 figures and an exercise sheet with solutions; a Mathematica visualization too

    Entanglement renormalization and integral geometry

    Full text link
    We revisit the applications of integral geometry in AdS3_3 and argue that the metric of the kinematic space can be realized as the entanglement contour, which is defined as the additive entanglement density. From the renormalization of the entanglement contour, we can holographically understand the operations of disentangler and isometry in multi-scale entanglement renormalization ansatz. Furthermore, a renormalization group equation of the long-distance entanglement contour is then derived. We then generalize this integral geometric construction to higher dimensions and in particular demonstrate how it works in bulk space of homogeneity and isotropy.Comment: 40 pages, 7 figures. v2: discussions on the general measure added, typos fixed; v3: sections reorganized, various points clarified, to appear in JHE

    Integral geometry of complex space forms

    Full text link
    We show how Alesker's theory of valuations on manifolds gives rise to an algebraic picture of the integral geometry of any Riemannian isotropic space. We then apply this method to give a thorough account of the integral geometry of the complex space forms, i.e. complex projective space, complex hyperbolic space and complex euclidean space. In particular, we compute the family of kinematic formulas for invariant valuations and invariant curvature measures in these spaces. In addition to new and more efficient framings of the tube formulas of Gray and the kinematic formulas of Shifrin, this approach yields a new formula expressing the volumes of the tubes about a totally real submanifold in terms of its intrinsic Riemannian structure. We also show by direct calculation that the Lipschitz-Killing valuations stabilize the subspace of invariant angular curvature measures, suggesting the possibility that a similar phenomenon holds for all Riemannian manifolds. We conclude with a number of open questions and conjectures.Comment: 68 pages; minor change

    A uniform reconstruction formula in integral geometry

    Full text link
    A general method for analytic inversion in integral geometry is proposed. All classical and some new reconstruction formulas of Radon-John type are obtained by this method. No harmonic analysis and PDE is used
    corecore