101,837 research outputs found

    Different types of integrability and their relation to decoherence in central spin models

    Get PDF
    We investigate the relation between integrability and decoherence in central spin models with more than one central spin. We show that there is a transition between integrability ensured by the Bethe ansatz and integrability ensured by complete sets of commuting operators. This has a significant impact on the decoherence properties of the system, suggesting that it is not necessarily integrability or nonintegrability which is related to decoherence, but rather its type or a change from integrability to nonintegrability.Comment: 4 pages, 3 figure

    Integrability of oscillatory functions on local fields: transfer principles

    Get PDF
    For oscillatory functions on local fields coming from motivic exponential functions, we show that integrability over QpnQ_p^n implies integrability over Fp((t))nF_p ((t))^n for large pp, and vice versa. More generally, the integrability only depends on the isomorphism class of the residue field of the local field, once the characteristic of the residue field is large enough. This principle yields general local integrability results for Harish-Chandra characters in positive characteristic as we show in other work. Transfer principles for related conditions such as boundedness and local integrability are also obtained. The proofs rely on a thorough study of loci of integrability, to which we give a geometric meaning by relating them to zero loci of functions of a specific kind.Comment: 44 page

    Integrability, Non-integrability and confinement

    Full text link
    We discuss the main features of quantum integrable models taking the classes of universality of the Ising model and the repulsive Lieb-Liniger model as paradigmatic examples. We address the breaking of integrability by means of two approaches, the Form Factor Perturbation Theory and semiclassical methods. Each of them has its own advantage. Using the first approach, one can relate the confinement phenomena of topological excitations to the semi-locality of the operator which breaks integrability. Using the second approach, one can control the bound states which arise in each phase of the theory and predict that their number cannot be more than two.Comment: Invited talk at StatPhys24, Cairns (Australia) 2010. 27 pages, 16 figure

    On the breakdown of perturbative integrability in large N matrix models

    Full text link
    We study the perturbative integrability of the planar sector of a massive SU(N) matrix quantum mechanical theory with global SO(6) invariance and Yang-Mills-like interaction. This model arises as a consistent truncation of maximally supersymmetric Yang-Mills theory on a three-sphere to the lowest modes of the scalar fields. In fact, our studies mimic the current investigations concerning the integrability properties of this gauge theory. Like in the field theory we can prove the planar integrability of the SO(6) model at first perturbative order. At higher orders we restrict ourselves to the widely studied SU(2) subsector spanned by two complexified scalar fields of the theory. We show that our toy model satisfies all commonly studied integrability requirements such as degeneracies in the spectrum, existence of conserved charges and factorized scattering up to third perturbative order. These are the same qualitative features as the ones found in super Yang-Mills theory, which were enough to conjecture the all-loop integrability of that theory. For the SO(6) model, however, we show that these properties are not sufficient to predict higher loop integrability. In fact, we explicitly demonstrate the breakdown of perturbative integrability at fourth order.Comment: 27 page
    corecore