252,309 research outputs found
Algorithms for Highly Symmetric Linear and Integer Programs
This paper deals with exploiting symmetry for solving linear and integer
programming problems. Basic properties of linear representations of finite
groups can be used to reduce symmetric linear programming to solving linear
programs of lower dimension. Combining this approach with knowledge of the
geometry of feasible integer solutions yields an algorithm for solving highly
symmetric integer linear programs which only takes time which is linear in the
number of constraints and quadratic in the dimension.Comment: 21 pages, 1 figure; some references and further comments added, title
slightly change
Mixed-integer Quadratic Programming is in NP
Mixed-integer quadratic programming is the problem of optimizing a quadratic
function over points in a polyhedral set where some of the components are
restricted to be integral. In this paper, we prove that the decision version of
mixed-integer quadratic programming is in NP, thereby showing that it is
NP-complete. This is established by showing that if the decision version of
mixed-integer quadratic programming is feasible, then there exists a solution
of polynomial size. This result generalizes and unifies classical results that
quadratic programming is in NP and integer linear programming is in NP
Developments in linear and integer programming
In this review we describe recent developments in linear and integer (linear) programming. For over 50 years Operational Research practitioners have made use of linear optimisation models to aid decision making and over this period the size of problems that can be solved has increased dramatically, the time required to solve problems has decreased substantially and the flexibility of modelling and solving systems has increased steadily. Large models are no longer confined to large computers, and the flexibility of optimisation systems embedded in other decision support tools has made on-line decision making using linear programming a reality (and using integer programming a possibility). The review focuses on recent developments in algorithms, software and applications and investigates some connections between linear optimisation and other technologies
An exact method for a discrete multiobjective linear fractional optimization
Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut
Integer linear programming formulations for treewidth
In this paper we consider an ILP-based approach to tackle the problem of determining a treewidth of the graph. We give an overview of existing attempts and develop further LP-based techniques for the problem. We present two different ILP formulations for the treewidth. To obtain the first one we merge the chordalization-based ILP by Koster and Bodlaender and flow metrics approach by Bornstein and Vempala. The second brand-new ILP is based on the structural properties of the tree-decomposition. It has a nice application of the local branching techniques by Fischetti and Lodi.mathematical applications;
- …
