684,212 research outputs found

    Insulin-Like Growth Factor II (IGF-II) Is More Potent Than IGF-I in Stimulating Cortisol Secretion from Cultured Bovine Adrenocortical Cells: Interaction with the IGF-I Receptor and IGF-Binding Proteins

    Get PDF
    Although the stimulating effect of insulin-like growth factor I (IGF-I) on adrenal steroidogenesis has been well established, the role of IGF-II in the adult adrenal gland remains unknown. We, therefore, investigated the effect of recombinant human IGF-II on cortisol and cAMP synthesis from adult bovine adrenocortical cells. IGF-II, time and dose dependently, stimulated basal cortisol secretion maximally 3-fold. In combination with ACTH, IGF-II (13 nM) synergistically increased cortisol secretion from 1-fold (10(-8) M ACTH) to 28-fold of untreated control levels. In contrast, IGF-I at equimolar concentrations did not show an effect on basal cortisol secretion, and in combination with ACTH elicited a significant weaker stimulatory effect than IGF-II (22-fold increase). The synergistic effect of IGF-II on ACTH-promoted cortisol secretion was paralleled by accumulation of cAMP in the culture medium. Although both IGF receptors are present in adult bovine adrenocortical cells, the effect of IGF-II seems to be mediated through interaction with the IGF-I receptor, as [Arg54,55]IGF-II, which only binds to the IGF-I receptor, was equipotent to native IGF-II, whereas [Leu27]IGF-II, which preferentially binds to the type II IGF receptor, did not show any effect. By Western ligand blotting, four different molecular forms of IGF-binding proteins (IGFBPs) were identified in conditioned medium of bovine adrenocortical cells with apparent molecular masses of 39-44, 34, 29, and 24 kilodaltons. ACTH treatment increased the abundance of all binding proteins, on the average, 2.3-fold, except for the 29-kDa band, which was predominantly induced 6.8-fold. Additionally, [des1-3]IGF-I, a truncated IGF variant that exhibits only minimal binding to IGFBPs, was significant more potent than IGF-I and elicited the same maximum stimulatory effect on cortisol secretion as IGF-II and [des1-6]IGF-II. In conclusion, these results demonstrate that 1) IGF-II stimulates basal as well as ACTH-induced cortisol secretion from bovine adrenocortical cells more potently than IGF-I; 2) this effect is mediated through interaction of IGF-II with the IGF-I receptor; 3) bovine adrenocortical cells synthesize various IGFBPs that are induced differentially by ACTH; and 4) IGFBPs apparently play a modulatory role in IGF-induced stimulation of adrenal steroidogenesis. Therefore, bovine adult adrenocortical cells provide a useful tissue culture model in which the interactions among locally produced IGFs, IGFBPs, and the IGF-I receptor can be evaluated

    The effects of peripheral and central high insulin on brain insulin signaling and amyloid-β in young and old APP/PS1 mice

    Get PDF
    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APP(swe)/PS1(dE9) transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment

    Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    Get PDF
    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation

    Insulin Solution Stability and Biocompatibility with Materials Used for an Implantable Insulin Delivery Device Using Reverse Phase HPLC Methods

    Get PDF
    open access articleAbstract: Insulin (Humulin® R IU500) has been delivered from an implantable artificial pancreas in diabetic rats and pigs. The artificial pancreas which was implanted in the peritoneum was fabricated from several biocompatible materials such as polycarbonate, stainless steel, polyurethane, titanium and a polyurethane resin. The device also contains a glucose responsive smart gel which controls the di usion of insulin dependent on the surrounding glucose environment. As the insulin reservoir is refillable and in contact with the device materials, assessing its biocompatibility with these various device component materials was conducted. Insulin can undergo chemical degradation mainly via a deamidation reaction on glutamine and asparagine residues rendering its biological hormone functionality. Two Reverse Phase High Performance Liquid Chromatography (RP-HPLC) methods were developed and validated for detection of insulin and degradant Asn A21 desamido insulin (method A) and insulin and degradant Asn B3 desamido insulin (method B). Material biocompatibility studies show that stainless steel and titanium are suitable for an implantable insulin delivery device design over a 31-day period. The use of polycarbonate and polyurethane could be considered if the insulin reservoir in the device was only to remain in the device for less than 11 days after which time there is a loss in cresol which acts in a protective capacity for insulin stability

    Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling

    Get PDF
    The "metabolic cocktail" comprising glucose-insulin-potassium administrated at reperfusion reduces infarct size in the in vivo rat heart. We propose that insulin is the major component mediating this protection and acts via Akt prosurvival signaling. This hypothesis was studied in isolated perfused rat hearts (measuring infarct size to area of risk [%]) subjected to 35 minutes regional myocardial ischemia and 2 hours reperfusion. Insulin administered at the onset of reperfusion attenuated infarct size by 45% versus control hearts (P<0.001). Insulin-mediated cardioprotection was found to be independent of the presence of glucose at reperfusion. Moreover, the cell survival benefit of insulin is temporally dependent, in that insulin administration from the onset of reperfusion and maintained for either 15 minutes or for the duration of reperfusion reduced infarct size. In contrast, protection was abrogated if insulin administration was delayed until 15 minutes into reperfusion. Pharmacological inhibition of both upstream and downstream signals in the Akt prosurvival pathway abolished the cardioprotective effects of insulin. Here coadministration of insulin with the tyrosine kinase inhibitor lavendustin A, the phosphatidylinositol3-kinase (PI3-kinase) inhibitor wortmannin, and mTOR/p70s6 kinase inhibitor rapamycin abolished cardioprotection. Steady-state levels of activated/phosphorylated Akt correlated with insulin administration. Finally, downstream prosurvival targets of Akt including p70s6 kinase and BAD were modulated by insulin. In conclusion, insulin administration at reperfusion reduces myocardial infarction, is dependent on early administration during reperfusion, and is mediated via Akt and p70s6 kinase dependent signaling pathway. Moreover, BAD is maintained in its inert phosphorylated state in response to insulin therapy

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON

    Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites

    Get PDF
    Autoantibodies to insulin are a harbinger of autoimmunity in type 1 diabetes in humans and in non-obese diabetic mice. To understand the genesis of these autoantibodies, we investigated the interactions of insulin-specific T and B lymphocytes using T cell and B cell receptor transgenic mice. We found spontaneous anti-insulin germinal center (GC) formation throughout lymphoid tissues with GC B cells binding insulin. Moreover, because of the nature of the insulin epitope recognized by the T cells, it was evident that GC B cells presented a broader repertoire of insulin epitopes. Such broader recognition was reproduced by activating naive B cells ex vivo with a combination of CD40 ligand and interleukin 4. Thus, insulin immunoreactivity extends beyond the pancreatic lymph node–islets of Langerhans axis and indicates that circulating insulin, despite its very low levels, can have an influence on diabetogenesis

    Screening and Identification of Disaccharides with Insulin Mimetic Activity against L6 Cells

    Get PDF
    Insulin mimetics are considered as prospective anti-diabetic agents, and the disaccharide, neohesperidose, has been found to show insulin mimetic activity against L6 cells. We screened several other disaccharides for their insulin mimetic activity and identified three new insulin mimetic disaccharides

    Inositols in Insulin Signaling and Glucose Metabolism

    Get PDF
    In the past decades, both the importance of inositol for human health and the complex interaction between glucose and inositol have been the subject of increasing consideration. Glucose has been shown to interfere with cellular transmembrane transport of inositol, inhibiting, among others, its intestinal absorption. Moreover, intracellular glucose is required for de novo biosynthesis of inositol through the inositol-3-phosphate synthase 1 pathway, while a few glucose-related metabolites, like sorbitol, reduce intracellular levels of inositol. Furthermore, inositol, via its major isomers myo-inositol and D-chiro-inositol, and probably some of its phosphate intermediate metabolites and correlated enzymes (like inositol hexakisphosphate kinase) participate in both insulin signaling and glucose metabolism by influencing distinct pathways. Indeed, clinical data support the beneficial effects exerted by inositol by reducing glycaemia levels and hyperinsulinemia and buffering negative effects of sustained insulin stimulation upon the adipose tissue and the endocrine system. Due to these multiple effects, myoIns has become a reliable treatment option, as opposed to hormonal stimulation, for insulin-resistant PCOS patients
    corecore