4 research outputs found

    Instantly decodable network coding for completion time or decoding delay reduction in cooperative data exchange systems

    No full text
    In this paper, we investigate the use of instantly decodable network coding for improving two fundamental performance metrics, namely the completion time (as a measure of throughput) and mean decoding delay, in multicast cooperative data exchange systems, where a group of geographically close clients cooperate with each other to obtain their missing packets. Here, an instantly decodable network coding scheme is used for the transmissions across these clients. We utilize the stochastic shortest path technique to study the minimum mean completion time problem. However, since finding the optimum solution is intractable, we use the obtained formulation to draw some theoretical guidelines to heuristically find solutions that can efficiently reduce the completion time. Second, we formulate the minimum mean decoding delay problem as selecting the appropriate maximal clique over well structured graphs at the clients, and in order to reduce its complexity, propose a simple heuristic algorithm for it. The effectiveness of our proposed algorithms is verified through extensive simulations and comparisons with existing techniques

    Coalition Formation Game for Cooperative Content Delivery in Network Coding Assisted D2D Communications

    Get PDF
    Device-to-device (D2D) communications have shown a huge potential in cellular offloading and become a potential technology in 5G and beyond. In D2D networks, the requested contents by user devices (UDs) can be delivered via D2D links, thus offloading the content providers (CPs). In this work, we address the problem of minimizing the delay of delivering content in a decentralized and partially D2D connected network using network coding (NC) and cooperation among the UDs. The proposed optimization framework considers UDs’ acquired and missing contents, their limited coverage zones, NC, and content’s erasure probability. As such, the completion time for delivering all missing contents to all UDs is minimized. The problem is modeled as a coalition game with cooperative-players wherein the payoff function is derived so that increasing individual payoff results in the desired cooperative behavior. Given the intractability of the formulation, the coalition game is relaxed to a coalition formation game (CFG). A distributed coalition formation algorithm relying on merge-and-split rules is developed for solving the relaxed problem at each transmission. The effectiveness of the proposed solution is validated through computer simulation against existing schemes

    Coalition Formation Game for Cooperative Content Delivery in Network Coding Assisted D2D Communications

    Get PDF
    Device-to-device (D2D) communications have shown a huge potential in cellular offloading and become a potential technology in 5G and beyond. In D2D networks, the requested contents by user devices (UDs) can be delivered via D2D links, thus offloading the content providers (CPs). In this work, we address the problem of minimizing the delay of delivering content in a decentralized and partially D2D connected network using network coding (NC) and cooperation among the UDs. The proposed optimization framework considers UDs’ acquired and missing contents, their limited coverage zones, NC, and content’s erasure probability. As such, the completion time for delivering all missing contents to all UDs is minimized. The problem is modeled as a coalition game with cooperative-players wherein the payoff function is derived so that increasing individual payoff results in the desired cooperative behavior. Given the intractability of the formulation, the coalition game is relaxed to a coalition formation game (CFG). A distributed coalition formation algorithm relying on merge-and-split rules is developed for solving the relaxed problem at each transmission. The effectiveness of the proposed solution is validated through computer simulation against existing schemes
    corecore