28,875 research outputs found

    BiSeg: Simultaneous Instance Segmentation and Semantic Segmentation with Fully Convolutional Networks

    Full text link
    We present a simple and effective framework for simultaneous semantic segmentation and instance segmentation with Fully Convolutional Networks (FCNs). The method, called BiSeg, predicts instance segmentation as a posterior in Bayesian inference, where semantic segmentation is used as a prior. We extend the idea of position-sensitive score maps used in recent methods to a fusion of multiple score maps at different scales and partition modes, and adopt it as a robust likelihood for instance segmentation inference. As both Bayesian inference and map fusion are performed per pixel, BiSeg is a fully convolutional end-to-end solution that inherits all the advantages of FCNs. We demonstrate state-of-the-art instance segmentation accuracy on PASCAL VOC.Comment: BMVC201

    Pseudo Mask Augmented Object Detection

    Full text link
    In this work, we present a novel and effective framework to facilitate object detection with the instance-level segmentation information that is only supervised by bounding box annotation. Starting from the joint object detection and instance segmentation network, we propose to recursively estimate the pseudo ground-truth object masks from the instance-level object segmentation network training, and then enhance the detection network with top-down segmentation feedbacks. The pseudo ground truth mask and network parameters are optimized alternatively to mutually benefit each other. To obtain the promising pseudo masks in each iteration, we embed a graphical inference that incorporates the low-level image appearance consistency and the bounding box annotations to refine the segmentation masks predicted by the segmentation network. Our approach progressively improves the object detection performance by incorporating the detailed pixel-wise information learned from the weakly-supervised segmentation network. Extensive evaluation on the detection task in PASCAL VOC 2007 and 2012 [12] verifies that the proposed approach is effective

    MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features

    Full text link
    In this work, we tackle the problem of instance segmentation, the task of simultaneously solving object detection and semantic segmentation. Towards this goal, we present a model, called MaskLab, which produces three outputs: box detection, semantic segmentation, and direction prediction. Building on top of the Faster-RCNN object detector, the predicted boxes provide accurate localization of object instances. Within each region of interest, MaskLab performs foreground/background segmentation by combining semantic and direction prediction. Semantic segmentation assists the model in distinguishing between objects of different semantic classes including background, while the direction prediction, estimating each pixel's direction towards its corresponding center, allows separating instances of the same semantic class. Moreover, we explore the effect of incorporating recent successful methods from both segmentation and detection (i.e. atrous convolution and hypercolumn). Our proposed model is evaluated on the COCO instance segmentation benchmark and shows comparable performance with other state-of-art models.Comment: 10 pages including referenc

    Fully Dynamic Inference with Deep Neural Networks

    Full text link
    Modern deep neural networks are powerful and widely applicable models that extract task-relevant information through multi-level abstraction. Their cross-domain success, however, is often achieved at the expense of computational cost, high memory bandwidth, and long inference latency, which prevents their deployment in resource-constrained and time-sensitive scenarios, such as edge-side inference and self-driving cars. While recently developed methods for creating efficient deep neural networks are making their real-world deployment more feasible by reducing model size, they do not fully exploit input properties on a per-instance basis to maximize computational efficiency and task accuracy. In particular, most existing methods typically use a one-size-fits-all approach that identically processes all inputs. Motivated by the fact that different images require different feature embeddings to be accurately classified, we propose a fully dynamic paradigm that imparts deep convolutional neural networks with hierarchical inference dynamics at the level of layers and individual convolutional filters/channels. Two compact networks, called Layer-Net (L-Net) and Channel-Net (C-Net), predict on a per-instance basis which layers or filters/channels are redundant and therefore should be skipped. L-Net and C-Net also learn how to scale retained computation outputs to maximize task accuracy. By integrating L-Net and C-Net into a joint design framework, called LC-Net, we consistently outperform state-of-the-art dynamic frameworks with respect to both efficiency and classification accuracy. On the CIFAR-10 dataset, LC-Net results in up to 11.9×\times fewer floating-point operations (FLOPs) and up to 3.3% higher accuracy compared to other dynamic inference methods. On the ImageNet dataset, LC-Net achieves up to 1.4×\times fewer FLOPs and up to 4.6% higher Top-1 accuracy than the other methods
    • …
    corecore