7 research outputs found

    Regret Minimization with Noisy Observations

    Full text link
    In a typical optimization problem, the task is to pick one of a number of options with the lowest cost or the highest value. In practice, these cost/value quantities often come through processes such as measurement or machine learning, which are noisy, with quantifiable noise distributions. To take these noise distributions into account, one approach is to assume a prior for the values, use it to build a posterior, and then apply standard stochastic optimization to pick a solution. However, in many practical applications, such prior distributions may not be available. In this paper, we study such scenarios using a regret minimization model. In our model, the task is to pick the highest one out of nn values. The values are unknown and chosen by an adversary, but can be observed through noisy channels, where additive noises are stochastically drawn from known distributions. The goal is to minimize the regret of our selection, defined as the expected difference between the highest and the selected value on the worst-case choices of values. We show that the na\"ive algorithm of picking the highest observed value has regret arbitrarily worse than the optimum, even when n=2n = 2 and the noises are unbiased in expectation. On the other hand, we propose an algorithm which gives a constant-approximation to the optimal regret for any nn. Our algorithm is conceptually simple, computationally efficient, and requires only minimal knowledge of the noise distributions

    Exploration with Limited Memory: Streaming Algorithms for Coin Tossing, Noisy Comparisons, and Multi-Armed Bandits

    Full text link
    Consider the following abstract coin tossing problem: Given a set of nn coins with unknown biases, find the most biased coin using a minimal number of coin tosses. This is a common abstraction of various exploration problems in theoretical computer science and machine learning and has been studied extensively over the years. In particular, algorithms with optimal sample complexity (number of coin tosses) have been known for this problem for quite some time. Motivated by applications to processing massive datasets, we study the space complexity of solving this problem with optimal number of coin tosses in the streaming model. In this model, the coins are arriving one by one and the algorithm is only allowed to store a limited number of coins at any point -- any coin not present in the memory is lost and can no longer be tossed or compared to arriving coins. Prior algorithms for the coin tossing problem with optimal sample complexity are based on iterative elimination of coins which inherently require storing all the coins, leading to memory-inefficient streaming algorithms. We remedy this state-of-affairs by presenting a series of improved streaming algorithms for this problem: we start with a simple algorithm which require storing only O(logn)O(\log{n}) coins and then iteratively refine it further and further, leading to algorithms with O(loglog(n))O(\log\log{(n)}) memory, O(log(n))O(\log^*{(n)}) memory, and finally a one that only stores a single extra coin in memory -- the same exact space needed to just store the best coin throughout the stream. Furthermore, we extend our algorithms to the problem of finding the kk most biased coins as well as other exploration problems such as finding top-kk elements using noisy comparisons or finding an ϵ\epsilon-best arm in stochastic multi-armed bandits, and obtain efficient streaming algorithms for these problems

    Instance-Optimality in the Noisy Value-and Comparison-Model --- Accept, Accept, Strong Accept: Which Papers get in?

    No full text
    Motivated by crowdsourced computation, peer-grading, and recommendation systems, Braverman, Mao and Weinberg [STOC'16] studied the \emph{query} and \emph{round} complexity of fundamental problems such as finding the maximum (\textsc{max}), finding all elements above a certain value (\textsc{threshold-vv}) or computing the topk-k elements (\textsc{Top}-kk) in a noisy environment. For example, consider the task of selecting papers for a conference. This task is challenging due the crowdsourcing nature of peer reviews: the results of reviews are noisy and it is necessary to parallelize the review process as much as possible. We study the noisy value model and the noisy comparison model: In the \emph{noisy value model}, a reviewer is asked to evaluate a single element: "What is the value of paper ii?" (\eg accept). In the \emph{noisy comparison model} (introduced in the seminal work of Feige, Peleg, Raghavan and Upfal [SICOMP'94]) a reviewer is asked to do a pairwise comparison: "Is paper ii better than paper jj?" In this paper, we show optimal worst-case query complexity for the \textsc{max},\textsc{threshold-vv} and \textsc{Top}-kk problems. For \textsc{max} and \textsc{Top}-kk, we obtain optimal worst-case upper and lower bounds on the round vs query complexity in both models. For \textsc{threshold}-vv, we obtain optimal query complexity and nearly-optimal round complexity, where kk is the size of the output) for both models. We then go beyond the worst-case and address the question of the importance of knowledge of the instance by providing, for a large range of parameters, instance-optimal algorithms with respect to the query complexity. Furthermore, we show that the value model is strictly easier than the comparison model
    corecore