2 research outputs found

    Instance Segmentation of Fibers from Low Resolution CT Scans via 3D Deep Embedding Learning

    Full text link
    We propose a novel approach for automatic extraction (instance segmentation) of fibers from low resolution 3D X-ray computed tomography scans of short glass fiber reinforced polymers. We have designed a 3D instance segmentation architecture built upon a deep fully convolutional network for semantic segmentation with an extra output for embedding learning. We show that the embedding learning is capable of learning a mapping of voxels to an embedded space in which a standard clustering algorithm can be used to distinguish between different instances of an object in a volume. In addition, we discuss a merging post-processing method which makes it possible to process volumes of any size. The proposed 3D instance segmentation network together with our merging algorithm is the first known to authors knowledge procedure that produces results good enough, that they can be used for further analysis of low resolution fiber composites CT scans.Comment: Accepted to BMVC 201

    Where are the Masks: Instance Segmentation with Image-level Supervision

    Full text link
    A major obstacle in instance segmentation is that existing methods often need many per-pixel labels in order to be effective. These labels require large human effort and for certain applications, such labels are not readily available. To address this limitation, we propose a novel framework that can effectively train with image-level labels, which are significantly cheaper to acquire. For instance, one can do an internet search for the term "car" and obtain many images where a car is present with minimal effort. Our framework consists of two stages: (1) train a classifier to generate pseudo masks for the objects of interest; (2) train a fully supervised Mask R-CNN on these pseudo masks. Our two main contribution are proposing a pipeline that is simple to implement and is amenable to different segmentation methods; and achieves new state-of-the-art results for this problem setup. Our results are based on evaluating our method on PASCAL VOC 2012, a standard dataset for weakly supervised methods, where we demonstrate major performance gains compared to existing methods with respect to mean average precision.Comment: Accepted at BMVC201
    corecore