1,956 research outputs found

    Divide and Fuse: A Re-ranking Approach for Person Re-identification

    Full text link
    As re-ranking is a necessary procedure to boost person re-identification (re-ID) performance on large-scale datasets, the diversity of feature becomes crucial to person reID for its importance both on designing pedestrian descriptions and re-ranking based on feature fusion. However, in many circumstances, only one type of pedestrian feature is available. In this paper, we propose a "Divide and use" re-ranking framework for person re-ID. It exploits the diversity from different parts of a high-dimensional feature vector for fusion-based re-ranking, while no other features are accessible. Specifically, given an image, the extracted feature is divided into sub-features. Then the contextual information of each sub-feature is iteratively encoded into a new feature. Finally, the new features from the same image are fused into one vector for re-ranking. Experimental results on two person re-ID benchmarks demonstrate the effectiveness of the proposed framework. Especially, our method outperforms the state-of-the-art on the Market-1501 dataset.Comment: Accepted by BMVC201

    Cross-Domain Image Retrieval with Attention Modeling

    Full text link
    With the proliferation of e-commerce websites and the ubiquitousness of smart phones, cross-domain image retrieval using images taken by smart phones as queries to search products on e-commerce websites is emerging as a popular application. One challenge of this task is to locate the attention of both the query and database images. In particular, database images, e.g. of fashion products, on e-commerce websites are typically displayed with other accessories, and the images taken by users contain noisy background and large variations in orientation and lighting. Consequently, their attention is difficult to locate. In this paper, we exploit the rich tag information available on the e-commerce websites to locate the attention of database images. For query images, we use each candidate image in the database as the context to locate the query attention. Novel deep convolutional neural network architectures, namely TagYNet and CtxYNet, are proposed to learn the attention weights and then extract effective representations of the images. Experimental results on public datasets confirm that our approaches have significant improvement over the existing methods in terms of the retrieval accuracy and efficiency.Comment: 8 pages with an extra reference pag

    Exploiting Local Features from Deep Networks for Image Retrieval

    Full text link
    Deep convolutional neural networks have been successfully applied to image classification tasks. When these same networks have been applied to image retrieval, the assumption has been made that the last layers would give the best performance, as they do in classification. We show that for instance-level image retrieval, lower layers often perform better than the last layers in convolutional neural networks. We present an approach for extracting convolutional features from different layers of the networks, and adopt VLAD encoding to encode features into a single vector for each image. We investigate the effect of different layers and scales of input images on the performance of convolutional features using the recent deep networks OxfordNet and GoogLeNet. Experiments demonstrate that intermediate layers or higher layers with finer scales produce better results for image retrieval, compared to the last layer. When using compressed 128-D VLAD descriptors, our method obtains state-of-the-art results and outperforms other VLAD and CNN based approaches on two out of three test datasets. Our work provides guidance for transferring deep networks trained on image classification to image retrieval tasks.Comment: CVPR DeepVision Workshop 201

    Cross-dimensional Weighting for Aggregated Deep Convolutional Features

    Full text link
    We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized framework that encompasses a broad family of approaches and includes cross-dimensional pooling and weighting steps. We then propose specific non-parametric schemes for both spatial- and channel-wise weighting that boost the effect of highly active spatial responses and at the same time regulate burstiness effects. We experiment on different public datasets for image search and show that our approach outperforms the current state-of-the-art for approaches based on pre-trained networks. We also provide an easy-to-use, open source implementation that reproduces our results.Comment: Accepted for publications at the 4th Workshop on Web-scale Vision and Social Media (VSM), ECCV 201
    • …
    corecore