985 research outputs found

    Active Particle Condensation by Nonreciprocal and Time-delayed Interactions

    Full text link
    We consider flocking of self-propelling agents in two dimensions, each of which communicates with its neighbors within a limited vision cone. Also, the communication occurs with some delay. The communication among the agents are modeled by Vicsek rules. In this study we explore the effect of non-reciprocal interaction among the agents, induced by their vision cone, together with the delayed interactions on the dynamical pattern formation within the flock. We find that under these two influences and without any position based attractive interactions or confining boundaries, the agents can spontaneously condense into drops. Though the agents are in motion within the drop, the drop as whole is virtually pinned in space. We also find that this novel state of the flock has a well defined order stabilized by the noise present in the system.Comment: Accepted In EPJ

    Traffic and Related Self-Driven Many-Particle Systems

    Full text link
    Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize in lanes, while similar systems are ``freezing by heating''? Why do self-organizing systems tend to reach an optimal state? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems. This review article on traffic introduces (i) empirically data, facts, and observations, (ii) the main approaches to pedestrian, highway, and city traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts like a general modelling framework for self-driven many-particle systems, including spin systems. Subjects such as the optimization of traffic flows and relations to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are discussed as well.Comment: A shortened version of this article will appear in Reviews of Modern Physics, an extended one as a book. The 63 figures were omitted because of storage capacity. For related work see http://www.helbing.org

    Lane nucleation in complex active flows

    Get PDF
    Laning is a paradigmatic example of spontaneous organization in active two-component flows that has been observed in diverse contexts, including pedestrian traffic, driven colloids, complex plasmas, and molecular transport. We introduce a kinetic theory that elucidates the physical origins of laning and quantifies the propensity for lane nucleation in a given physical system. Our theory is valid in the low-density regime, and it makes different predictions about situations in which lanes may form that are not parallel with the direction of flow. We report on experiments with human crowds that verify two notable consequences of this phenomenon: tilting lanes under broken chiral symmetry and lane nucleation along elliptic, parabolic, and hyperbolic curves in the presence of sources or sinks.</p

    Lane nucleation in complex active flows

    Get PDF
    Experimental data from human crowd experiments on lane nucleation, including processed videos, extracted trajectories, as well as data processing code. Code and high-level processed results of agent-based simulations of active binary flows, including hard sphere model, and data-driven model.All methodology information can be found in the main article, and accompanying Supplemental Materials

    Existence of Compactly Supported Global Minimisers for the Interaction Energy

    Full text link
    The existence of compactly supported global minimisers for continuum models of particles interacting through a potential is shown under almost optimal hypotheses. The main assumption on the potential is that it is catastrophic, or not H-stable, which is the complementary assumption to that in classical results on thermodynamic limits in statistical mechanics. The proof is based on a uniform control on the local mass around each point of the support of a global minimiser, together with an estimate on the size of the "gaps" it may have. The class of potentials for which we prove existence of global minimisers includes power-law potentials and, for some range of parameters, Morse potentials, widely used in applications. We also show that the support of local minimisers is compact under suitable assumptions.Comment: Final version after referee reports taken into accoun

    Physics of Complex Plasmas.

    Get PDF
    Physics of complex plasmas is a wide and varied field. In the context of this PhD thesis I present the major results from my research on fundamental properties of the plasma sheath, the plasma dust interaction, non-Hamiltonian dynamics, and on non-equilibrium phase transitions, using complex plasmas as a model system. The first chapter provides a short overview of the development of physics of Complex Plasmas. From fundamental plasma physics, properties of dust in plasmas, to the exceptional and unique features of complex plasmas. A summary of twenty years of research topics is also presented. This is followed by three chapters that illustrate publications based on experiments I did during my PhD. These publications, in my opinion, reflect nicely the large diversity of complex plasma research. • The investigation of nonlinear vertical oscillations of a particle in a sheath of an rf discharge was a simultaneous test of (pre-)sheath models and parameters. The nonlinear oscillations were shown to derive from a (strong) nonlinearity of the local sheath potential. They could be described quantitatively applying the theory of anharmonic oscillations, and the first two anharmonic terms in an expansion of the sheath potential were measured. On top of that we provided a simple experimentally, theoretically and mathematically based method that allows for in situ measurement of these coefficients for other experimental conditions. • The vertical pairing of identical particles suspended in the plasma sheath demonstrated some of the unique features that complex plasmas have as an open (non-Hamiltonian) system. Particle interaction becomes non-reciprocal in the presence of streaming ions. The symmetry breaking allows for mode-coupling of in plane and out of plane motion of particles. • Lane formation is a non-equilibrium phase transition. I summarize the main result of my papers on the dynamics of lane formation, i.e., the temporal evolution of lanes. This is followed by an outlook on my future research on non-equilibrium phase transitions, how they relate to our research of systems at the critical point, and how they allow us to test fundamental theories of charging of particles and the shielding of the resulting surface potential. Finally there is an appendix on the scaling index method. A versatile mathematical tool to quantify structural differences / peculiarities in data, that I used to define a suitable order parameter for lane formation

    Quadratic Mean Field Games

    Full text link
    Mean field games were introduced independently by J-M. Lasry and P-L. Lions, and by M. Huang, R.P. Malham\'e and P. E. Caines, in order to bring a new approach to optimization problems with a large number of interacting agents. The description of such models split in two parts, one describing the evolution of the density of players in some parameter space, the other the value of a cost functional each player tries to minimize for himself, anticipating on the rational behavior of the others. Quadratic Mean Field Games form a particular class among these systems, in which the dynamics of each player is governed by a controlled Langevin equation with an associated cost functional quadratic in the control parameter. In such cases, there exists a deep relationship with the non-linear Schr\"odinger equation in imaginary time, connexion which lead to effective approximation schemes as well as a better understanding of the behavior of Mean Field Games. The aim of this paper is to serve as an introduction to Quadratic Mean Field Games and their connexion with the non-linear Schr\"odinger equation, providing to physicists a good entry point into this new and exciting field.Comment: 62 pages, 4 figure
    • …
    corecore