1 research outputs found

    Disturbance-to-State Stabilization and Quantized Control for Linear Hyperbolic Systems

    Full text link
    We consider a system of linear hyperbolic PDEs where the state at one of the boundary points is controlled using the measurements of another boundary point. Because of the disturbances in the measurement, the problem of designing dynamic controllers is considered so that the closed-loop system is robust with respect to measurement errors. Assuming that the disturbance is a locally essentially bounded measurable function of time, we derive a disturbance-to-state estimate which provides an upper bound on the maximum norm of the state (with respect to the spatial variable) at each time in terms of L∞\mathcal{L}^\infty-norm of the disturbance up to that time. The analysis is based on constructing a Lyapunov function for the closed-loop system, which leads to controller synthesis and the conditions on system dynamics required for stability. As an application of this stability notion, the problem of quantized control for hyperbolic PDEs is considered where the measurements sent to the controller are communicated using a quantizer of finite length. The presence of quantizer yields practical stability only, and the ultimate bounds on the norm of the state trajectory are also derived.Comment: Some minor errors in the derivations have been corrected, and the references have been update
    corecore