351 research outputs found

    Covering All the Bases: Type-Based Verification of Test Input Generators

    Full text link
    Test input generators are an important part of property-based testing (PBT) frameworks. Because PBT is intended to test deep semantic and structural properties of a program, the outputs produced by these generators can be complex data structures, constrained to satisfy properties the developer believes is most relevant to testing the function of interest. An important feature expected of these generators is that they be capable of producing all acceptable elements that satisfy the function's input type and generator-provided constraints. However, it is not readily apparent how we might validate whether a particular generator's output satisfies this coverage requirement. Typically, developers must rely on manual inspection and post-mortem analysis of test runs to determine if the generator is providing sufficient coverage; these approaches are error-prone and difficult to scale as generators become more complex. To address this important concern, we present a new refinement type-based verification procedure for validating the coverage provided by input test generators, based on a novel interpretation of types that embeds ``must-style'' underapproximate reasoning principles as a fundamental part of the type system. The types associated with expressions now capture the set of values guaranteed to be produced by the expression, rather than the typical formulation that uses types to represent the set of values an expression may produce. Beyond formalizing the notion of coverage types in the context of a rich core language with higher-order procedures and inductive datatypes, we also present a detailed evaluation study to justify the utility of our ideas

    A family of droids -- Android malware detection via behavioral modeling: static vs dynamic analysis

    Full text link
    Following the increasing popularity of mobile ecosystems, cybercriminals have increasingly targeted them, designing and distributing malicious apps that steal information or cause harm to the device's owner. Aiming to counter them, detection techniques based on either static or dynamic analysis that model Android malware, have been proposed. While the pros and cons of these analysis techniques are known, they are usually compared in the context of their limitations e.g., static analysis is not able to capture runtime behaviors, full code coverage is usually not achieved during dynamic analysis, etc. Whereas, in this paper, we analyze the performance of static and dynamic analysis methods in the detection of Android malware and attempt to compare them in terms of their detection performance, using the same modeling approach. To this end, we build on MaMaDroid, a state-of-the-art detection system that relies on static analysis to create a behavioral model from the sequences of abstracted API calls. Then, aiming to apply the same technique in a dynamic analysis setting, we modify CHIMP, a platform recently proposed to crowdsource human inputs for app testing, in order to extract API calls' sequences from the traces produced while executing the app on a CHIMP virtual device. We call this system AuntieDroid and instantiate it by using both automated (Monkey) and user-generated inputs. We find that combining both static and dynamic analysis yields the best performance, with F-measure reaching 0.92. We also show that static analysis is at least as effective as dynamic analysis, depending on how apps are stimulated during execution, and, finally, investigate the reasons for inconsistent misclassifications across methods.Accepted manuscrip

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Automated Test Input Generation for Android: Are We There Yet?

    Full text link
    Mobile applications, often simply called "apps", are increasingly widespread, and we use them daily to perform a number of activities. Like all software, apps must be adequately tested to gain confidence that they behave correctly. Therefore, in recent years, researchers and practitioners alike have begun to investigate ways to automate apps testing. In particular, because of Android's open source nature and its large share of the market, a great deal of research has been performed on input generation techniques for apps that run on the Android operating systems. At this point in time, there are in fact a number of such techniques in the literature, which differ in the way they generate inputs, the strategy they use to explore the behavior of the app under test, and the specific heuristics they use. To better understand the strengths and weaknesses of these existing approaches, and get general insight on ways they could be made more effective, in this paper we perform a thorough comparison of the main existing test input generation tools for Android. In our comparison, we evaluate the effectiveness of these tools, and their corresponding techniques, according to four metrics: code coverage, ability to detect faults, ability to work on multiple platforms, and ease of use. Our results provide a clear picture of the state of the art in input generation for Android apps and identify future research directions that, if suitably investigated, could lead to more effective and efficient testing tools for Android
    • …
    corecore