32,950 research outputs found

    Physical structure of P(VDF-TrFE)/barium titanate submicron composites

    Get PDF
    Dynamic Dielectric Spectroscopy and Thermo Stimulated Current were used to investigate of the dielectric relaxation of hybrid Poly(vinylidene-fluoride-trifluoroethylene)/barium titanate 700 nm composites with 0–3 connectivity. The results obtained by this method allow us to describe the physical structure of these composites in the glassy state at a nanometric scale. The decrease of the activation enthalpies and activation entropies involved in the dynamics of the α relaxation is attributed to: the decrease of Cooperative Rearranging Region sizes and an increase of intra/inter macromolecular interactions in the amorphous phase with the volume fraction

    Controls on zooplankton assemblages in the northeastern Chukchi Sea

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2016The Chukchi Sea is a broad and shallow marginal sea of the western Arctic Ocean that lies between the Bering Sea and the deeper Amerasian basin. It plays a pivotal role as the only gateway for transporting heat, carbon, nutrients, and plankton from the North Pacific into the Arctic Ocean. I examined the seasonal and inter-annual variability of the zooplankton communities in the northeastern region of the Chukchi Sea as part of a high-resolution multidisciplinary ecosystem study. Specifically, I examined how the physical onset of each open water season influenced the composition, abundance, and biomass of zooplankton assemblages from the 2008 to 2010 field seasons. Copepods in the genus Pseudocalanus are key members of the Chukchi community, and may be undergoing species-level biogeographic shift in response to climate change. I determined the degree of gene flow and population connectivity in the Chukchi Sea through comparative phylogeographic analysis of the Pseudocalanus species complex to the northern Gulf of Alaska and Beaufort Sea. I then investigated the extent to which biogeochemical factors influence these zooplankton assemblages by relating a portion of the seasonal production to concurrent changes in herbivorous mesozooplankton biomass during 2010 and 2011. This work demonstrates just how complex and variable marine ecosystems of the western Arctic are, where multidisciplinary and analytical approaches will become essential in detecting change, especially with the rate of present-day climate perturbations.Chapter 1: Seasonal and interannual variation in the planktonic communities of the northeastern Chukchi Sea during the summer and early fall -- Chapter 2: Phylogeography and connectivity of the Pseudocalanus (Copepoda: Calanoida) species complex in the eastern North Pacific Ocean and the Pacific Arctic Region -- Chapter 3: Community production in the northeastern Chukchi Sea and its relationship to phytoplankton and mesozooplankton biomass, 2010-2011 -- General Conclusions -- References

    Molecular mobility in piezoelectric hybrid nanocomposites with 0-3 connectivity: Particles size influence

    Get PDF
    Polyamide 11/barium titanate nanocomposites have been studied by a combination of dynamic dielectric spectroscopy, thermo stimulated current and differential scanning calorimetry. The correlation between results obtained by dielectric and calorimetric methods allows us to describe the evolution of the physical structure of the hybrid nanocomposites. The molecular mobility of 0-3 connectivity nanocomposites has been explored. The influence of the nanoparticles size is specifically studied. The smaller sized fillers produce a shift of the relaxation modes observed above the glass transition temperature of polyamide 11 towards lower frequency. The increase of the organic/inorganic interface induces an increase of the ratio rigid amorphous phase/soft amorphous phase. The interfaces favour local ordering stabilized by hydrogen bonds at a nanometric scale

    The Extraction of Community Structures from Publication Networks to Support Ethnographic Observations of Field Differences in Scientific Communication

    Full text link
    The scientific community of researchers in a research specialty is an important unit of analysis for understanding the field specific shaping of scientific communication practices. These scientific communities are, however, a challenging unit of analysis to capture and compare because they overlap, have fuzzy boundaries, and evolve over time. We describe a network analytic approach that reveals the complexities of these communities through examination of their publication networks in combination with insights from ethnographic field studies. We suggest that the structures revealed indicate overlapping sub- communities within a research specialty and we provide evidence that they differ in disciplinary orientation and research practices. By mapping the community structures of scientific fields we aim to increase confidence about the domain of validity of ethnographic observations as well as of collaborative patterns extracted from publication networks thereby enabling the systematic study of field differences. The network analytic methods presented include methods to optimize the delineation of a bibliographic data set in order to adequately represent a research specialty, and methods to extract community structures from this data. We demonstrate the application of these methods in a case study of two research specialties in the physical and chemical sciences.Comment: Accepted for publication in JASIS

    Molecular modelling of dendrimers for nanoscale applications

    Get PDF
    Dendrimers are well defined, highly branched macromolecules that radiate from a central core and are synthesized through a stepwise, repetitive reaction sequence that guarantees complete shells for each generation, leading to polymers that are monodisperse. The synthetic procedures developed for dendrimer preparation permit nearly complete control over the critical molecular design parameters, such as size, shape, surface/interior chemistry, flexibility, and topology. Recent results suggest that dendritic polymers may provide the key to developing a reliable and economical fabrication and manufacturing route to functional nanoscale materials that would have unique properties (electronic, optical, opto-electronic, magnetic, chemical, or biological). In turn, these could be used in designing new nanoscale devices. In this paper, we determine the 3D molecular structure of various dendrimers with continuous configurational Boltzmann biased direct Monte Carlo method and study their energetic and structural properties using molecular dynamics after annealing these molecular representations
    corecore