15,838 research outputs found

    INLA or MCMC? A Tutorial and Comparative Evaluation for Spatial Prediction in log-Gaussian Cox Processes

    Full text link
    We investigate two options for performing Bayesian inference on spatial log-Gaussian Cox processes assuming a spatially continuous latent field: Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA). We first describe the device of approximating a spatially continuous Gaussian field by a Gaussian Markov random field on a discrete lattice, and present a simulation study showing that, with careful choice of parameter values, small neighbourhood sizes can give excellent approximations. We then introduce the spatial log-Gaussian Cox process and describe MCMC and INLA methods for spatial prediction within this model class. We report the results of a simulation study in which we compare MALA and the technique of approximating the continuous latent field by a discrete one, followed by approximate Bayesian inference via INLA over a selection of 18 simulated scenarios. The results question the notion that the latter technique is both significantly faster and more robust than MCMC in this setting; 100,000 iterations of the MALA algorithm running in 20 minutes on a desktop PC delivered greater predictive accuracy than the default \verb=INLA= strategy, which ran in 4 minutes and gave comparative performance to the full Laplace approximation which ran in 39 minutes.Comment: This replaces the previous version of the report. The new version includes results from an additional simulation study, and corrects an error in the implementation of the INLA-based method

    Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation

    Full text link
    Integrated Nested Laplace Approximation provides a fast and effective method for marginal inference on Bayesian hierarchical models. This methodology has been implemented in the R-INLA package which permits INLA to be used from within R statistical software. Although INLA is implemented as a general methodology, its use in practice is limited to the models implemented in the R-INLA package. Spatial autoregressive models are widely used in spatial econometrics but have until now been missing from the R-INLA package. In this paper, we describe the implementation and application of a new class of latent models in INLA made available through R-INLA. This new latent class implements a standard spatial lag model, which is widely used and that can be used to build more complex models in spatial econometrics. The implementation of this latent model in R-INLA also means that all the other features of INLA can be used for model fitting, model selection and inference in spatial econometrics, as will be shown in this paper. Finally, we will illustrate the use of this new latent model and its applications with two datasets based on Gaussian and binary outcomes

    Latent Gaussian modeling and INLA: A review with focus on space-time applications

    Get PDF
    Bayesian hierarchical models with latent Gaussian layers have proven very flexible in capturing complex stochastic behavior and hierarchical structures in high-dimensional spatial and spatio-temporal data. Whereas simulation-based Bayesian inference through Markov Chain Monte Carlo may be hampered by slow convergence and numerical instabilities, the inferential framework of Integrated Nested Laplace Approximation (INLA) is capable to provide accurate and relatively fast analytical approximations to posterior quantities of interest. It heavily relies on the use of Gauss-Markov dependence structures to avoid the numerical bottleneck of high-dimensional nonsparse matrix computations. With a view towards space-time applications, we here review the principal theoretical concepts, model classes and inference tools within the INLA framework. Important elements to construct space-time models are certain spatial Mat\'ern-like Gauss-Markov random fields, obtained as approximate solutions to a stochastic partial differential equation. Efficient implementation of statistical inference tools for a large variety of models is available through the INLA package of the R software. To showcase the practical use of R-INLA and to illustrate its principal commands and syntax, a comprehensive simulation experiment is presented using simulated non Gaussian space-time count data with a first-order autoregressive dependence structure in time

    Improving the INLA approach for approximate Bayesian inference for latent Gaussian models

    Full text link
    We introduce a new copula-based correction for generalized linear mixed models (GLMMs) within the integrated nested Laplace approximation (INLA) approach for approximate Bayesian inference for latent Gaussian models. While INLA is usually very accurate, some (rather extreme) cases of GLMMs with e.g. binomial or Poisson data have been seen to be problematic. Inaccuracies can occur when there is a very low degree of smoothing or "borrowing strength" within the model, and we have therefore developed a correction aiming to push the boundaries of the applicability of INLA. Our new correction has been implemented as part of the R-INLA package, and adds only negligible computational cost. Empirical evaluations on both real and simulated data indicate that the method works well

    Bayesian joint spatio-temporal analysis of multiple diseases

    Get PDF
    In this paper we propose a Bayesian hierarchical spatio-temporal model for the joint analysis of multiple diseases which includes specific and shared spatial and temporal effects. Dependence on shared terms is controlled by disease-specific weights so that their posterior distribution can be used to identify diseases with similar spatial and temporal patterns. The model proposed here has been used to study three different causes of death (oral cavity, esophagus and stomach cancer) in Spain at the province level. Shared and specific spatial and temporal effects have been estimated and mapped in order to study similarities and differences among these causes. Furthermore, estimates using Markov chain Monte Carlo and the integrated nested Laplace approximation are compared.Peer Reviewe
    corecore