1,706 research outputs found

    IICADS--integrated interactive computer aided design system

    Get PDF
    This research has three goals. The first goal is to develop a software interface (supervisor) to support and control a variety of interactive subsystem modules; thus eliminating manual scheduling of interactive jobs. The second goal is to develop a common methodology for interactive subsystem design. The third goal is to develop a linear systems analysis package using the facilities developed under the first two goals. A software interface (supervisor) to support and control a variety of interactive subsystem modules is described. The supervisor operates under the constraints of a large multiprogramming variable task operating system as opposed to a time sharing system. The supervisor not only eliminates the manual scheduling of interactive jobs, but also provides interactive users with a powerful dynamic linking mechanism. The supervisor permits the access of disk stored interactive modules in a random fashion. A methodology for developing interactive subsystems is presented. The problems of communicating between different high level languages are investigated and solutions are presented. In particular, a problem oriented language, interactive translator, is implemented using PL/1. The graphics service routines for this translator are coded in FORTRAN and ASSEMBLER languages. The techniques for adding graphics routines to existing programs, especially simulation languages, are formalized. A computer aided design program to assist in the initial phases of linear systems design is described. This program, developed for use at an on-line graphics terminal, allows the designer to describe a linear system in standard control engineering terms, and experiment with design alternatives during initial creative design phases --Abstract, pages ii-iii

    The PISCES 2 parallel programming environment

    Get PDF
    PISCES 2 is a programming environment for scientific and engineering computations on MIMD parallel computers. It is currently implemented on a flexible FLEX/32 at NASA Langley, a 20 processor machine with both shared and local memories. The environment provides an extended Fortran for applications programming, a configuration environment for setting up a run on the parallel machine, and a run-time environment for monitoring and controlling program execution. This paper describes the overall design of the system and its implementation on the FLEX/32. Emphasis is placed on several novel aspects of the design: the use of a carefully defined virtual machine, programmer control of the mapping of virtual machine to actual hardware, forces for medium-granularity parallelism, and windows for parallel distribution of data. Some preliminary measurements of storage use are included

    Assess program: Interactive data management systems for airborne research

    Get PDF
    Two data systems were developed for use in airborne research. Both have distributed intelligence and are programmed for interactive support among computers and with human operators. The C-141 system (ADAMS) performs flight planning and telescope control functions in addition to its primary role of data acquisition; the CV-990 system (ADDAS) performs data management functions in support of many research experiments operating concurrently. Each system is arranged for maximum reliability in the first priority function, precision data acquisition

    Sail intelligent terminal evaluation

    Get PDF
    Engineering assessments, recommendations, and equipment necessary to solve the operational problems are described, and operational flexibility of the intelligent terminal facility are extended. The following capabilities were considered: (1) the operation of at least two D/D stations and one remote graphics terminal simultaneously; (2) the capability to run plotter, AIDS and FORTRAN programs simultaneously; (3) simultaneous use of system utility routines of D/D stations and remote graphics terminal; (4) the capability to provide large volume hardcopy of data and graphics; and (5) the capability to eliminate or at least ease the current operation/programming problems with related labor costs. The overall intelligent terminal development, and plans guiding the analysis and equipment acquisitions were studied, and the assessments and analyses performed are also summarized

    Enabling preemptive multiprogramming on GPUs

    Get PDF
    GPUs are being increasingly adopted as compute accelerators in many domains, spanning environments from mobile systems to cloud computing. These systems are usually running multiple applications, from one or several users. However GPUs do not provide the support for resource sharing traditionally expected in these scenarios. Thus, such systems are unable to provide key multiprogrammed workload requirements, such as responsiveness, fairness or quality of service. In this paper, we propose a set of hardware extensions that allow GPUs to efficiently support multiprogrammed GPU workloads. We argue for preemptive multitasking and design two preemption mechanisms that can be used to implement GPU scheduling policies. We extend the architecture to allow concurrent execution of GPU kernels from different user processes and implement a scheduling policy that dynamically distributes the GPU cores among concurrently running kernels, according to their priorities. We extend the NVIDIA GK110 (Kepler) like GPU architecture with our proposals and evaluate them on a set of multiprogrammed workloads with up to eight concurrent processes. Our proposals improve execution time of high-priority processes by 15.6x, the average application turnaround time between 1.5x to 2x, and system fairness up to 3.4x.We would like to thank the anonymous reviewers, Alexan- der Veidenbaum, Carlos Villavieja, Lluis Vilanova, Lluc Al- varez, and Marc Jorda on their comments and help improving our work and this paper. This work is supported by Euro- pean Commission through TERAFLUX (FP7-249013), Mont- Blanc (FP7-288777), and RoMoL (GA-321253) projects, NVIDIA through the CUDA Center of Excellence program, Spanish Government through Programa Severo Ochoa (SEV-2011-0067) and Spanish Ministry of Science and Technology through TIN2007-60625 and TIN2012-34557 projects.Peer ReviewedPostprint (author’s final draft

    Major Trends in Operating Systems Development

    Get PDF
    Operating systems have changed in nature in response to demands of users, and in response to advances in hardware and software technology. The purpose of this paper is to trace the development of major themes in operating system design from their beginnings through the present. This is not an exhaustive history of operating systems, but instead is intended to give the reader the flavor of the dif ferent periods in operating systems\u27 development. To this end, the paper will be organized by topic in approximate order of development. Each chapter will start with an introduction to the factors behind the rise of the period. This will be fol lowed by a survey of the state-of-the-art systems, and the conditions influencing them. The chapters close with a summation of the significant hardware and software contributions from the period

    Analysis of data processing systems

    Get PDF
    Mathematical simulation models and software monitoring of multiprogramming computer syste

    Computer graphics application in the engineering design integration system

    Get PDF
    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design
    • …
    corecore