394,788 research outputs found

    High-temperature-radiation analyzer

    Get PDF
    Six-channel radiometer with three ultraviolet detection channels measures temperatures at 2-millisecond intervals. One infrared channel measures total radiation, and two infrared channels measure radiation in discrete spectral intervals at rate of 40 intervals per second. Analyzer consists of optical and electrical system

    Terahertz active spatial filtering through optically tunable hyperbolic metamaterials

    Full text link
    We theoretically consider infrared-driven hyperbolic metamaterials able to spatially filtering terahertz radiation. The metamaterial is a slab made of alternating semiconductor and dielectric layers whose homogenized uniaxial response, at terahertz frequencies, shows principal permittivities of different signs. The gap provided by metamaterial hyperbolic dispersion allows the slab to stop spatial frequencies within a bandwidth tunable by changing the infrared radiation intensity. We numerically prove the device functionality by resorting to full wave simulation coupled to the dynamics of charge carries photoexcited by infrared radiation in semiconductor layers.Comment: 3 pages, 4 figures. Submitted for publication on Applied Physics Letter

    Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides

    Get PDF
    We describe the design of a silicon-based source for radiation in the 0.5-14 THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation

    Laser discrimination by stimulated emission of a phosphor

    Get PDF
    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals

    Effects of high-energy ionizing particles on the Si:As mid-infrared detector array on board the AKARI satellite

    Full text link
    We evaluate the effects of high-energy ionizing particles on the Si:As impurity band conduction (IBC) mid-infrared detector on board AKARI, the Japanese infrared astronomical satellite. IBC-type detectors are known to be little influenced by ionizing radiation. However we find that the detector is significantly affected by in-orbit ionizing radiation even after spikes induced by ionizing particles are removed. The effects are described as changes mostly in the offset of detector output, but not in the gain. We conclude that the changes in the offset are caused mainly by increase in dark current. We establish a method to correct these ionizing radiation effects. The method is essential to improve the quality and to increase the sky coverage of the AKARI mid-infrared all-sky-survey map.Comment: 16 pages, 8 figures, 1 table, accepted for publication in PAS

    Inexpensive infrared source improvised from flashlight

    Get PDF
    Inexpensive hand-held source of infrared energy is provided by a flashlight bulb coated with a paint which filters out the visible light emitted by the bulb and transmits only infrared radiation. This device can be used for checking infrared sensors and for experimental purposes

    50 TeV HEGRA Sources and Infrared Radiation

    Get PDF
    The recent observations of 50 TeV gamma radiation by HEGRA have the potential of determining the extragalactic flux of infrared radiation. The fact that radiation is observed in the range between 30 and 100 TeV sets an upper limit on the infrared flux, while a cutoff at Eγ50E_{\gamma} \approx 50 TeV fixes this flux with a good accuracy. If the intrinsic radiation is produced due to interaction of high energy protons with gas or low-energy target photons, then an accompaning high-energy neutrino flux is unavoidable. We calculate this flux and underground muon flux produced by it. The muon flux is dominated by muons with energies about 1 TeV and can be marginally detected by a 1 km2^2 detector like an expanded AMANDA.Comment: 9 pages, latex2e, 3 eps figure

    Impacts of The Radiation Environment At L2 On Bolometers Onboard The Herschel Space Observatory

    Full text link
    We present the effects of cosmic rays on the detectors onboard the Herschel satellite. We describe in particular the glitches observed on the two types of cryogenic far- infrared bolometer inside the two instruments PACS and SPIRE. The glitch rates are also reported since the launch together with the SREM radiation monitors aboard Herschel and Planck spacecrafts. Both have been injected around the Lagrangian point L2 on May 2009. This allows probing the radiation environment around this orbit. The impacts on the observation are finally summarized.Comment: 8 pages, 13 figures, 2 images, Author Keywords: Bolometers, Infrared detectors, cryogenics, radiation effects, submillimeter wave technology IEEE Terms: Bolometers, Detectors, Instruments, Picture archiving and communication systems, Protons, Silicon, Space vehicles; Radiation and Its Effects on Components and Systems (RADECS), 2011 12th European Conference. Conference location: Sevilla. Date of Conference: 19-23 Sept. 2011. Session H: Radiation Environment: Space, Atmospheric and Terrestrial (PH2

    Method and means for generation of tunable laser sidebands in the far-infrared region

    Get PDF
    A method for generating tunable far-infrared radiation is described. The apparatus includes a Schottky-barrier diode which has one side coupled through a conductor to a waveguide that carries a tunable microwave frequency; the diode has an opposite side which is coupled through a radiating whisker to a bias source. Infrared light is directed at the diode, and infrared light with tunable sidebands is radiated by the whisker through an open space to a reflector. The original infrared is separated from a tunable infrared sideband by a polarizing Michelson interferometer

    The Infrared Continuum of Active Galaxies

    Full text link
    We discuss the different physical processes contributing to the infrared continuum of AGN, assuming that both photoionization from the active center and shocks ionize and heat the gas and dust contained in an ensemble of clouds surrounding the nucleus. Radiation transfer of primary and secondary radiation throughout a cloud is calculated consistently with collisional processes due to the shock. We consider that the observed continuum corresponds to reprocessed radiation from both dust and gas in the clouds. The model is applied to the continuum of Seyfert galaxies from which best estimate of the nuclear, stellar subtracted, emission is available. The results show that radiation-dominated high velocity clouds are more numerous in Seyfert 1-1.5 whereas shock-dominated low velocity clouds are dominant in Seyfert type 2 in full agreement with the unified model for AGN. In type 2 objects, radiation is partly suppressed by a central dusty medium with a high dust-to-gas ratio. A grid of models is used to provide a phenomenological analysis of the observed infrared spectral energy distribution.Comment: 14 pages, 10 figures. in press in MNRA
    corecore