6,510 research outputs found

    Exemplar Based Deep Discriminative and Shareable Feature Learning for Scene Image Classification

    Full text link
    In order to encode the class correlation and class specific information in image representation, we propose a new local feature learning approach named Deep Discriminative and Shareable Feature Learning (DDSFL). DDSFL aims to hierarchically learn feature transformation filter banks to transform raw pixel image patches to features. The learned filter banks are expected to: (1) encode common visual patterns of a flexible number of categories; (2) encode discriminative information; and (3) hierarchically extract patterns at different visual levels. Particularly, in each single layer of DDSFL, shareable filters are jointly learned for classes which share the similar patterns. Discriminative power of the filters is achieved by enforcing the features from the same category to be close, while features from different categories to be far away from each other. Furthermore, we also propose two exemplar selection methods to iteratively select training data for more efficient and effective learning. Based on the experimental results, DDSFL can achieve very promising performance, and it also shows great complementary effect to the state-of-the-art Caffe features.Comment: Pattern Recognition, Elsevier, 201

    Sparse Bilinear Logistic Regression

    Full text link
    In this paper, we introduce the concept of sparse bilinear logistic regression for decision problems involving explanatory variables that are two-dimensional matrices. Such problems are common in computer vision, brain-computer interfaces, style/content factorization, and parallel factor analysis. The underlying optimization problem is bi-convex; we study its solution and develop an efficient algorithm based on block coordinate descent. We provide a theoretical guarantee for global convergence and estimate the asymptotical convergence rate using the Kurdyka-{\L}ojasiewicz inequality. A range of experiments with simulated and real data demonstrate that sparse bilinear logistic regression outperforms current techniques in several important applications.Comment: 27 pages, 5 figure

    The Incremental Multiresolution Matrix Factorization Algorithm

    Full text link
    Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices -- an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct global factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision.Comment: Computer Vision and Pattern Recognition (CVPR) 2017, 10 page

    Towards Effective Codebookless Model for Image Classification

    Full text link
    The bag-of-features (BoF) model for image classification has been thoroughly studied over the last decade. Different from the widely used BoF methods which modeled images with a pre-trained codebook, the alternative codebook free image modeling method, which we call Codebookless Model (CLM), attracted little attention. In this paper, we present an effective CLM that represents an image with a single Gaussian for classification. By embedding Gaussian manifold into a vector space, we show that the simple incorporation of our CLM into a linear classifier achieves very competitive accuracy compared with state-of-the-art BoF methods (e.g., Fisher Vector). Since our CLM lies in a high dimensional Riemannian manifold, we further propose a joint learning method of low-rank transformation with support vector machine (SVM) classifier on the Gaussian manifold, in order to reduce computational and storage cost. To study and alleviate the side effect of background clutter on our CLM, we also present a simple yet effective partial background removal method based on saliency detection. Experiments are extensively conducted on eight widely used databases to demonstrate the effectiveness and efficiency of our CLM method

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval
    corecore