15 research outputs found

    Informational Divergence Approximations to Product Distributions

    Full text link
    The minimum rate needed to accurately approximate a product distribution based on an unnormalized informational divergence is shown to be a mutual information. This result subsumes results of Wyner on common information and Han-Verd\'{u} on resolvability. The result also extends to cases where the source distribution is unknown but the entropy is known

    Resolvability on Continuous Alphabets

    Full text link
    We characterize the resolvability region for a large class of point-to-point channels with continuous alphabets. In our direct result, we prove not only the existence of good resolvability codebooks, but adapt an approach based on the Chernoff-Hoeffding bound to the continuous case showing that the probability of drawing an unsuitable codebook is doubly exponentially small. For the converse part, we show that our previous elementary result carries over to the continuous case easily under some mild continuity assumption.Comment: v2: Corrected inaccuracies in proof of direct part. Statement of Theorem 3 slightly adapted; other results unchanged v3: Extended version of camera ready version submitted to ISIT 201

    On Channel Resolvability in Presence of Feedback

    Full text link
    We study the problem of generating an approximately i.i.d. string at the output of a discrete memoryless channel using a limited amount of randomness at its input in presence of causal noiseless feedback. Feedback does not decrease the channel resolution, the minimum entropy rate required to achieve an accurate approximation of an i.i.d. output string. However, we show that, at least over a binary symmetric channel, a significantly larger resolvability exponent (the exponential decay rate of the divergence between the output distribution and product measure), compared to the best known achievable resolvability exponent in a system without feedback, is possible. We show that by employing a variable-length resolvability scheme and using an average number of coin-flips per channel use, the average divergence between the distribution of the output sequence and product measure decays exponentially fast in the average length of output sequence with an exponent equal to [R−I(U;V)]+[R-I(U;V)]^+ where I(U;V)I(U;V) is the mutual information developed across the channel.Comment: 8 pages, 4 figures; to be presented at the 54th Annual Allerton Conference on Communication, Control, and Computin

    Exact Random Coding Secrecy Exponents for the Wiretap Channel

    Full text link
    We analyze the exact exponential decay rate of the expected amount of information leaked to the wiretapper in Wyner's wiretap channel setting using wiretap channel codes constructed from both i.i.d. and constant-composition random codes. Our analysis for those sampled from i.i.d. random coding ensemble shows that the previously-known achievable secrecy exponent using this ensemble is indeed the exact exponent for an average code in the ensemble. Furthermore, our analysis on wiretap channel codes constructed from the ensemble of constant-composition random codes leads to an exponent which, in addition to being the exact exponent for an average code, is larger than the achievable secrecy exponent that has been established so far in the literature for this ensemble (which in turn was known to be smaller than that achievable by wiretap channel codes sampled from i.i.d. random coding ensemble). We show examples where the exact secrecy exponent for the wiretap channel codes constructed from random constant-composition codes is larger than that of those constructed from i.i.d. random codes and examples where the exact secrecy exponent for the wiretap channel codes constructed from i.i.d. random codes is larger than that of those constructed from constant-composition random codes. We, hence, conclude that, unlike the error correction problem, there is no general ordering between the two random coding ensembles in terms of their secrecy exponent.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Wiretap and Gelfand-Pinsker Channels Analogy and its Applications

    Full text link
    An analogy framework between wiretap channels (WTCs) and state-dependent point-to-point channels with non-causal encoder channel state information (referred to as Gelfand-Pinker channels (GPCs)) is proposed. A good sequence of stealth-wiretap codes is shown to induce a good sequence of codes for a corresponding GPC. Consequently, the framework enables exploiting existing results for GPCs to produce converse proofs for their wiretap analogs. The analogy readily extends to multiuser broadcasting scenarios, encompassing broadcast channels (BCs) with deterministic components, degradation ordering between users, and BCs with cooperative receivers. Given a wiretap BC (WTBC) with two receivers and one eavesdropper, an analogous Gelfand-Pinsker BC (GPBC) is constructed by converting the eavesdropper's observation sequence into a state sequence with an appropriate product distribution (induced by the stealth-wiretap code for the WTBC), and non-causally revealing the states to the encoder. The transition matrix of the state-dependent GPBC is extracted from WTBC's transition law, with the eavesdropper's output playing the role of the channel state. Past capacity results for the semi-deterministic (SD) GPBC and the physically-degraded (PD) GPBC with an informed receiver are leveraged to furnish analogy-based converse proofs for the analogous WTBC setups. This characterizes the secrecy-capacity regions of the SD-WTBC and the PD-WTBC, in which the stronger receiver also observes the eavesdropper's channel output. These derivations exemplify how the wiretap-GP analogy enables translating results on one problem into advances in the study of the other
    corecore